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Exploring the Evolution of Innovation Networks 

in Science-driven and Scale-intensive Industries 

– New Evidence from a Stochastic Actor-based Approach – 

 

Abstract  

Our primary goal is to analyse the drivers of evolutionary network change processes by 

using a stochastic actor-based simulation approach. We contribute to the literature by 

combining two unique datasets, concerning the German laser and automotive industry, 

between 2002 and 2006 to explore whether geographical, network-related, and techno-

logical determinants affect the evolution of networks, and if so, as to what extent these 

determinants systematically differ for science-driven industries compared to scale-

intensive industries. Our results provide empirical evidence for the explanatory power of 

network-related determinants in both industries. The ‘experience effect’ as well as the 

‘transitivity effects’ are significant for both industries but more pronounced for laser 

manufacturing firms. When it comes to ‘geographical effects’ and ‘technological ef-

fects’ the picture changes considerably. While geographical proximity plays an im-

portant role in the automotive industry, firms in the laser industry seem to be less de-

pendent on geographical closeness to cooperation partners; instead they rather search 

out for cooperation opportunities in distance. This might reflect the strong dependence 

of firms in science-driven industries to access diverse external knowledge, which cannot 

necessarily be found in the close geographical surrounding. Technological proximity 

negatively influences cooperation decisions for laser source manufacturers, yet has no 

impact for automotive firms. In other words, technological heterogeneity seems to ex-

plain, at least in science-driven industries, the attractiveness of potential cooperation 

partners.  

Keywords: Network evolution, innovation network, automotive industry, laser industry, 

SIENA  

JEL Classification: O32, C41, D85 
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Analyse von Netzwerkevolutionsprozessen in wissens- 

und produktionsintensiven Industriezweigen  

– Ein stochastisch agentenbasierter Simulationsansatz – 

Zusammenfassung  

Ziel dieser Studie ist es, die Ursachen von Netzwerkveränderungsprozessen unter Ver-

wendung stochastisch-agentenbasierter Simulationsverfahren vertiefend zu untersuchen. 

Basierend auf zwei in dieser Form einzigartigen Datensätzen über die deutsche Laser- 

und Automobilindustrie untersuchen wir für den Zeitraum zwischen 2002 und 2006 den 

Einfluss geografischer, netzwerkbasierter und technologischer Determinanten auf die 

strukturelle Evolution von Innovationsnetzwerken. Im Kern gilt es, die Frage zu beant-

worten, inwiefern systematische Unterschiede hinsichtlich der Netzwerkevolutions-

determinanten in Innovationsnetzwerken wissensintensiver bzw. produktionsintensiver 

Industriezweige identifizierbar sind. Unsere Ergebnisse deuten darauf hin, dass insbe-

sondere kooperations- und netzwerkbasierte Determinanten einen hohen Erklärungs-

gehalt aufweisen. Sowohl „Kooperationserfahrung“ als auch „Transitivitätseigen-

schaften“ beeinflussen die Netzwerkevolution in beiden Industriezweigen, jedoch sind 

diese Effekte im Fall der Laserstrahlquellenhersteller deutlich ausgeprägter. Betrachtet 

man hingegen geografische und technologische Determinanten, so zeichnet sich ein 

deutlich anderes Bild ab. Während geografische Nähe eine wichtige Rolle in der Auto-

mobilindustrie spielt, sind Firmen aus der Laserindustrie weniger abhängig von geogra-

fischen Faktoren; sie suchen auch im weiteren Umfeld nach Kooperationsmöglichkei-

ten. Dies könnte darauf hindeuten, dass Firmen in wissensintensiven Industrien stärker 

auf den Zugang zu vielfältigen externen Wissensbeständen angewiesen sind, die sich 

nicht notwendigerweise im unmittelbaren geografischen Umfeld vorfinden lassen. 

Technologische Nähe zwischen Laserstrahlquellenherstellern hat einen negativen Ein-

fluss auf deren Kooperationsneigung, wohingegen in der Automobilindustrie kein signi-

fikanter Zusammenhang nachgewiesen werden konnte. Anders ausgedrückt, technologi-

sche Heterogenität scheint, zumindest in wissensintensiven Industrien, die Anziehungs-

kraft von potenziellen Kooperationspartnern zu erklären.  

 

Schlagwörter: Netzwerkevolution, Innovationsnetzwerk, Automobilindustrie, Laser-

industrie, SIENA 

JEL-Klassifikation: O32, C41, D85 
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1. Introduction1 

It is commonly agreed, by scholars and professionals alike, that the ability to learn 

and innovate is of vital importance for firm performance and economic prosperity (Graf, 

2006). Quite early it became clear that innovation is above all a social process not hap-

pening in isolation (Powell et al., 1996). It is not astonishing that researchers in organi-

zation science, economics and related disciplines have increasingly focused their efforts 

on the analysis of R&D cooperation processes and innovation networks.  

In the early 1990s the knowledge-based view gained in relevance in management 

science (Kogut & Zander, 1992; Spender & Grant, 1996; Grant, 1996). Scholars from 

this school of thought argued that alliances allow firms to gain access to external 

knowledge stocks (Grant & Baden-Fuller, 2004) and to recombine existing knowledge 

and learn from cooperation partners (Hamel, 1991; Kale et al., 2000) in order to gain a 

competitive advantage (Dierickx & Cool, 1989; Coff, 2003). Almost at the same time 

the Neo-Schumpeterian approach to economics (Hanusch & Pyka, 2007; Winter, 2006; 

Pyka, 2002) came up and claimed its position. The approach explicitly acknowledges 

the collective nature of innovation processes. Innovations are considered to be the out-

come of interactions between heterogeneous economic actors (Pyka, 2002; Pyka, 2007). 

Previous research in both areas provides sound empirical evidence on the relatedness 

between a firm’s strategic network position and its innovative performance (Powell et 

al., 1996; Stuart, 2000; Baum et al., 2000). Not only firm-specific network positions but 

also the overall topologies of large-scale innovation networks have been shown to affect 

the innovative performance of firms (Schilling & Phelps, 2007) as well as the innova-

tive performance of entire regions (Fleming et al., 2007).  

Against this backdrop, it becomes obvious that innovation outcomes are strongly af-

fected by evolutionary processes determining change of networks at the micro level. 

Ever since the seminal contribution of Barabasi & Albert (1999) we have powerful 

models that allow us to explain the emergence of scaling patterns in large-scale net-

                                                 
1  

We especially thank Guido Buenstorf, Matthias Geissler and the LASSSIE Projekt Team Partners 

for providing us with proprietary raw data and other valuable information on the industry dynamics 

of German laser industry. Furthermore we thank Julia Schneider for reviewing the paper and provid-

ing critical comments and helpful suggestions. We assume responsibility for all errors. 
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works. Several concepts were introduced, such as the “homophily concept” (McPherson 

et al., 2001), “heterophily concept” (Amburgey et al., 2009), “assimilation principle” 

(Friedkin, 1998) and “herd behavior” (Kirman, 1993) to explain the nature of tie-

formation and tie dissolution processes. These ideas have been adopted and incorpo-

rated in path-breaking empirical network studies, taking as an example the U.S. Biotech 

industry (Powell et al., 2005) and the U.S. Video Game Sector (Venkatraman & Lee, 

2004). Despite these seminal contributions, we still lack an in-depth understanding of 

how and why innovation networks change over time (Cantner & Graf, 2011; Brenner et 

al., 2011). Most recently, simulation techniques (Gilbert et. al., 2001; Snijders et al. 

2010) have been applied to properly embrace the complexity end endogeneity of struc-

tural change processes in large-scale innovation networks. At the same time, it can be 

observed that researchers increasingly make use of stochastic agent-based simulation 

techniques in innovation studies (Giulliani, 2010; Ter Wal, 2011; Balland et. al., 2012; 

Mueller et al., 2013, Hain & Jurowetzki 2013).  

Our study is anchored in the latter stream of literature. We employ a stochastic actor-

based simulation approach (SIENA), originally developed by Snijders (1996; 2001), to 

analyse and understand whether firm-specific, geographical, network-related, or techno-

logical determinants affect the evolution of innovation networks in science-driven and 

scale-intensive industries and as to what extent these determinants systematically differ 

across industries. To accomplish this task, we combine two unique longitudinal datasets 

for the observation period 2002 - 2006. The first dataset provides a comprehensive pic-

ture of German laser source manufacturers (LSMs), as an example for a young science-

driven industry. The second dataset compromises a set of German automotive original 

equipment manufacturers (AOEMs) and a number of suppliers, as an example for a ma-

tured scale-intensive industry. This empirical setting allows us to contrast a science-

based industry (laser) with a scale-intensive (automotive) which are assumed to operate 

at different industry lifecycle stages. 

The reasons for addressing this research question by using evolutionary and actor-

oriented models of network change are threefold: First, we still have a rather incomplete 

picture of how endogenous and exogenous determinants affect the structural evolution 

of innovation networks. Second, we are convinced that not only firm-specific factors but 
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also the various proximity dimensions (Boschma, 2005), which firms are simultaneous-

ly exposed to, have to be explicitly considered in explaining its cooperation decisions. 

The strength of our analytical approach is that it applies a dyadic perspective, against 

the backdrop of each proximity dimension, in explaining individual cooperation deci-

sions at the firm-level. This reveals new insight on the very nature of the mechanism at 

work. Third, we have good reasons to assume that that mechanisms and determinants 

affecting the structural evolution of networks are industry specific and strongly depend-

ent on the industry life-cycle stage (Pyka, 2000). Both our analytical approach and data 

employed provides a sound empirical setting to test whether this assumption holds true.  

Our study contributes to the existing body of literature in several ways. From a theo-

retical point of view, we combine sociological concepts (Doreian & Stockman, 2005), 

proximity concepts (Boschma, 2005; Boschma & Frenken, 2010) and Neo-

Schumpeterian ideas (Hanusch & Pyka, 2007; Winter, 2006), attempting to provide a 

more nuanced understanding of network dynamics. From an empirical perspective we 

are among the first to analyze in which way endogenous and exogenous determinants 

(e.g. various proximity dimensions) affect the structural evolution of innovation net-

works in scale-intensive and science-based industries. Last but not least, our work con-

tributes to a better understanding of evolutionary network change processes. This is 

highly relevant for both, managers and policy makers. The results aim to provide the ba-

sis for more differentiated policy instruments by explicitly considering the differences 

among science-driven and scale-intensive industries. 

Our in-depth analysis of both industries reveals some interesting findings. Results 

show that many traditional firm-specific determinants such as age and size yield no ex-

planatory contribution, indicating the somewhat limited power of traditional variables 

commonly utilized in static network analyses. In contrast, our findings indicate that an 

endogenous network determinant (the so called ‘transitivity effect’) matters for both in-

dustries considered. Cooperation experience (the so called ‘experience effect’) is signif-

icant for science-driven and scale-intensive industries, too, but it is much more pro-

nounced for the science-driven laser industry. A closer look at geographical and techno-

logical determinants provides a quite different picture. Geographical proximity matters 

in both industries, but surprisingly in different directions. Technological proximity neg-
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atively influences cooperation decisions in the science-driven laser industry, yet has no 

significant impact on scale-intensive automotive firms, reflecting the more interdiscipli-

nary and explorative nature of science-based vis-à-vis scale-driven industries.  

The paper is structured as follows: Section 2 provides a brief overview on the rele-

vant literature and Section 3 introduces the two industries – the German laser industry 

and the German automotive industry. What follow next is the theoretical foundation and 

the hypotheses development. The two datasets and the variable specification are de-

scribed in Section 4 and 5, respectively. The intuition behind stochastic actor-oriented 

approach is outlined in Section 6 and Section 7 provides a discussion of main findings. 

Finally, in Section 8, we give a brief conclusion and outline some fruitful avenues for 

further research. 

2. State of the art – a brief sketch of the literature 

In the most basic sense, any kind of network consists of two basic elements, i.e. 

nodes and ties between these nodes (Wasserman & Faust, 1994). The distribution of 

these elements specifies the nature of the network in quest. For the purpose of this pa-

per, we are interested in knowledge exchange and interorganisational learning processes 

among a well-specified population of economic actors, which brings us to the notion of 

innovation networks. Over the past years a number of highly interesting studies has ad-

dresses the dynamics of these types of network.
2
 

The first generation of dynamic network conceptualizations, so-called linear life-

cycle models, is based on the idea that one can identify ideal stages of change like ini-

tialization, growth, maturity and decline (Sydow, 2003). These models do not explicitly 

analyse tie-formation or tie-termination processes at the micro level. An idealized 

change pattern is assumed, where all stages are traversed only once. These models are 

predominantly growth-oriented (Lorrenzoni & Ornati, 1988; Dwyer et al., 1987) while 

instabilities and unplanned terminations are underemphasized and length of the phase 

may vary arbitrarily have been often criticized (Sydow, 2003). 

                                                 
2  For a more detailed overview of research in this field, see Schwerk (2000), Sydow (2003), Parkhe et 

al. (2006), Tiberius (2008) and Cantner & Graf (2011). 
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Non-linear process models focus predominantly on the dyadic level (Ring & Van De 

Ven, 1994; Doz, 1996; Kumar & Nti, 1998; Ariño & DeLaTorre, 1998). However, these 

models contain both forming and catalyst processes of tie formations as well as a greater 

consideration of tie terminations (Schwerk, 2000). The integration of feed-back loops 

and the explicit consideration social factors affecting micro-level network change pro-

cesses are the essential differences compared to linear models. However these dyadic 

models do not allow explaining the structural evolution at the network level. The ad-

vanced development of non-linear network change models was carried out and promot-

ed by the IMP research group (Hakansson & Johanson, 1988; Hakanssona & Snehota, 

1995; Halinen et al., 1999). The main deficit of these models is the missing integration 

of the determinants that are crucial for explaining network evolution. Others have ap-

plied a more growth oriented view of network change (Walker et al., 1997; Gulati, 

1995; Gulati & Gargiulo, 1999; Hite & Hersterly, 2001). Common to these contribu-

tions is the strong focus on tie formation processes. The emergence of networks stand in 

the foreground whereas fragmentation tendencies are widely neglected.  

In this paper we apply a holistic theoretical perspective to understand network 

change. As a consequence, we ground our theoretical considerations on the network 

evolution concept which is based on a more comprehensive understanding of how net-

works evolve over time. Network evolution “[…] captures the idea of conceptualizing 

change via some understood process […]” whereas these underlying processes can be 

defined as a “[…] series of events that create, sustain and dissolve […]” the network 

structure over time (Doreian & Stokman, 2005, pp. 3-5). It is important to note that this 

notion of network evolution explicitly emphasizes an in-depth understanding of the de-

terminants and mechanism that force networks to change. Thus, network change pro-

cesses at the micro level – i.e. tie formations or tie terminations – as well as changes 

with regard to network nodes – i.e. node entries or node exits – affect the structural con-

figuration of networks over time. These processes of network change are clearly 

Schumpeterian in nature and provide the basis to explain and understand the very nature 

of network change (Boschma & Frenken, 2010). In this tradition, a number of excellent 

empirical network evolution studies have been conducted in recent years (Powell et al., 

2005; Venkatraman & Lee 2004; Koka et al. 2006). Similarly, studies using stochastic 
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agent-based methods (Van de Bunt & Groenewegen, 2007; Balland et. al., 2012; Ter 

Wal, 2011; Giulliani, 2010) can be assigned to this research stream. 

3. The empirical setting – introducing the industries 

We choose two industries – the German laser industry and the German automotive 

industry – as an example for a science-driven and scale-intensive industry. 

3.1 The German laser industry 

We start with a brief look at the German laser industry (cf. Kudic, 2012). Lasers are 

artificial light sources that emit a coherent light beam characterized by some distinctive 

physical properties that make lasers useful for a broad range of technological applica-

tions (Buenstorf, 2007). The beginnings of the laser stretches back to the middle of the 

20
th

 century. Almost instantly after Theodore H. Maiman (1960) put the first stable laser 

device into operation, numerous laser source manufacturing firms entered the scene, not 

only in the U.S. but also in Germany. In the early 1960s, the Siemens Group started to 

play a dominant role in the development and manufacturing of lasers in Germany. 

Shortly afterwards, an entire industry, characterized by a high number of micro and 

small-sized firms, started to emerge (Buenstorf, 2007). Today, laser applications can be 

found in nearly every sphere of life. In 2006, the revenue of German laser sources and 

optical component producers reached approximately EUR 8.0 billion and about 45,000 

workers were employed in the industry (Giesekus, 2007). For the purpose of this study 

we focus on German laser source manufacturers (LSMs).3 The reasons for this are 

straightforward. LSMs are the very heart of the industry’s value chain because these 

firms develop and produce the laser beam unit which is a core element of each laser sys-

tem (cf. Kudic, 2012). 

The German laser industry provides an ideal setting for studying the evolution of in-

novation networks for several reasons. Firstly, according to the industry topology origi-

nally proposed by Pavitt (1984), the German laser industry can be classified as a “sci-

ence-based” sector.  

                                                 
3  Our sample encompasses all LSMs that were actively involved in at least one publicly funded coop-

eration project and showed patenting activities between 2002 and 2006. We ended up with a total 

number of 73 firms.  
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Figure 1:  Spatial distribution and network position of German laser source manu-

facturer, 2006 

 

Source: own illustration; network visualization (Borgatti, 2002). 
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As a science-driven industry (Grupp, 2000) the development of lasers requires 

knowledge from various academic disciplines, such as physics, optics and electrical en-

gineering (Fritsch & Medrano, 2010). Both, the access to basic and applied knowledge 

are essential to keep pace with competitors. Hence, R&D from both in-house sources 

and interorganisational joint research projects are a crucial success factor. Secondly, the 

interdisciplinary and science-based character of the industry is reflected in the high level 

of collaboration activities (Kudic, 2012). Thirdly, our data reveal a pronounced tenden-

cy towards geographical clustering in at least four regions, namely Berlin, Baden Wurt-

temberg, Thuringia, and Bavaria. 

Figure 1 illustrates the industries innovation network and the spatial distribution of 

firms in 2006. As outlined above, a look at the spatial dimension (cf. Figure 1, top) re-

veals at least four densely crowded agglomeration areas. The structural configuration of 

the industry’s innovation network is illustrated in Figure 1, (bottom). The network visu-

alization shows all R&D linkages among LSMs and among LSM and laser-related pub-

lic research organization (PROs).  

3.2 The German automotive industry 

Our second dataset provides information on German original equipment manufactur-

ers (OEM) in the automotive industry and a large number of suppliers grouped in differ-

ent tiers.
4
 The latter group encompasses component manufactures (often SMEs) as well 

as large multinational enterprises (e.g. Bosch, ZF) which assemble entire systems that 

are just in time supplied at the assembly lines of the OEMs. During the last decade, 

more and more value creation (including R&D), and with it relevant knowledge, was 

shifted from the OEMs to (specialized) suppliers. This organizational shift together with 

an increased complexity of parts and systems created new coordination and transaction 

problems along the value chain.  

Increased complexity and new technologies, such as internet-based car solutions, 

amplify the pressure to form alliances with partners operating at the cutting edge of 

technology. The complexity of cars rises sharply, making system integration an increas-

                                                 
4  The dataset encompasses information on 148 firms in the German automotive industry. 
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ingly challenging task. Stricter environmental regulation
5
 requires solutions beyond the 

established design of the internal combustion engine fuelled with petrol. Moreover, 

German producers are particularly affected by regularity hurdles since their cars are 

known for being high comfort which went in the past hand in hand with heavy weight 

and high emissions. The dominant design of the internal combustion engine, as the heart 

of the power train, is increasingly challenged by new and supposedly more efficient 

technologies. With the established design being challenged, also the “masters” of this 

design, the incumbent car manufacturers and their suppliers, are threatened by the firms 

appearing now on the playing field. New technologies leverage the possibilities and 

lower market entrance barriers for innovative firms. New solutions lead to an erosion of 

the value of incumbent knowledge-bases if they are not “refilled” with new knowledge. 

A study of Deloitte Consulting (2009) identifies a phase of industry convergence, i.e. in 

the current phase of the life-cycle new players enter the field and cooperation is not an-

ymore an intra- (core-) industry phenomenon but takes place on an inter-industry scale 

(for instance, battery producers cooperate with climatisation experts). A particular ac-

tive field of current convergence processes is R&D. The paradigm shift towards new 

concepts of the power train, which we now observe, requires new knowledge and thus a 

renewed industry knowledge-base from internal and external sources alike.  

This pushes firms to enter alliances, or more specifically, R&D alliances. Conse-

quently, the industry is leaving a rather exploitative phase and is entering a more ex-

plorative phase. Accordingly, a new phase of the industry life-cycle takes off which is 

characterized by the integration and development of new knowledge. It strengthens the 

explorative side and requires strong absorptive capacities to acquire and process exter-

nal knowledge which might even have its origins outside the automotive industry. This 

explorative side of the industry finds its counterpart by the attempt to exploit the exist-

ing knowledge-base in the most efficient way.  

Figure 2 illustrates the spatial distribution of AOEMs (cf. Figure 2, top) as well as 

R&D linkages among these AOEMs and suppliers which constitute the industries inno-

vation network in 2006 (cf. Figure 2, bottom). 

                                                 
5  For instance, EU Regulation 443/2009 forces car producers by 2020 to reduce CO2 emissions of 

their product portfolio to a level which does not exceed the threshold of 95g CO2/km.  
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Figure 2:  Spatial distribution and network position of German automotive original 

equipment manufacturers, 2006 

 

Source: own illustration; network visualization (Borgatti, 2002). 
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According to Pavitt’s (1984) topology, the automotive industry can be classified as a 

“scale intensive sector”, where both, product and process innovation play important 

roles. Moreover, process innovation (e.g. production technologies yielding economies 

of scale) plays an important role for a continuous growth in productivity (Van 

Biesebroeck, 2003). German car producers and suppliers identified the realization of in-

novative solutions with regard to their product portfolio and their organizational struc-

ture as a successful strategy to escape the selective pressure. Thereby, intensified inno-

vation competition and shortened product life-cycles emerge as a race for innovation. 

4. Theory and Hypotheses 

The Neo-Schumpeterian approach provides an appropriate theoretical framework for 

this study because ‘system theory’ as well as ’industry life cycle theory’ are considered 

to be at the core of the research agenda (Hanusch & Pyka, 2007). At the same time, the 

proximity concept (Boschma, 2005) has strong conceptual overlaps with Neo-

Schumpeterian concepts.  

4.1 Innovation systems and network change 

In the early 1990s Neo-Schumpeterian scholars introduced the ‘systemic innovation 

approach’ (Freeman, 1988; Lundvall, 1988; Lundvall, 1992; Nelson, 1992) to take ac-

count for the very nature of innovation processes. Innovations are considered to the out-

come of repeated knowledge exchange and learning processes between various types of 

actors in socio-economic systems. An innovation system is characterized by multiple in-

teractions and feed-backs and it allows for the reproduction of individual or collective 

knowledge (Lundvall, 1992). It can be defined from a national perspective (NIS; Nel-

son, 1992) but also along several other dimensions: regional dimension (RIS; Cooke, 

2001), sectoral dimension (SIS; Malerba, 2002), or technological dimension (TIS; 

Carlsson, et al., 2002). However, the common denominator of all these conceptualiza-

tions is that they all involve creation, diffusion and use of knowledge and each of them 

can be fully described by a set of components, relationships among these components 

and their attributes (ibid.). Finally, innovation systems are not static but rather dynamic 

entities, as the elements and relations in the systems are subject to change (Lundvall, 

1992; Carlsson et al., 2002). The conceptual overlaps of the innovation systems and the 
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network theories are straightforward. An innovation system can be seen as a broader 

and more general concept that inherently entails innovation networks (Kudic, 2012). In-

novation networks allow organizations not only to exchange existing information, 

knowledge and expertise but also to commonly generate new knowledge which can be 

embodied in new products, services or processes (Cantner & Graf, 2011).  

4.2 Taking a closer look at the proximity concept 

Proximity – in all its facets – can improve but also hamper a firm's ability to tap new 

sources of knowledge and to learn recombining existing stocks of knowledge in order to 

improve or create new products, processes, and services (Amin & Wilkinson, 1999; 

Boschma, 2005; Oerlemans et al., 2001; Knoben & Oerlemans, 2006; Visser, 2009; 

Whittington et al., 2009; Laursen et al. 2012). The concept acknowledges that firms are 

usually exposed to a variety of different proximity dimensions simultaneously, such as 

institutional, organizational, cultural, technological, network and geographic proximity 

(Boschma, 2005; Knoben & Oerlemans, 2006). In short, geographical proximity indi-

cates the physical distance between actors in space, cognitive proximity the extent of 

congruence between actors knowledge stocks; social proximity their embeddedness and 

positioning in network structures; institutional proximity if they share common formal 

or informal norms or rules; organizational proximity their relationship in terms of com-

mon governance structures.  

We follow the proximity concept proposed by Boschma (2005) for several reasons.
6
 

Firstly, the framework provides a clear definition and separation of the proximity di-

mensions. Secondly, the proximity dimensions can be conceptualized as orthogonal to 

each other. This implies that one can reduce as well as extend the list of relevant prox-

imity dimensions without changing the meaning of each dimension (Boschma & 

Frenken, 2010). Thirdly, the framework lays the ground for analyzing each dimension 

separately and, at the same time, it allows the exploration of the interplay between se-

lected proximity dimensions. In other words, it provides a solid theoretical foundation 

for analyzing both, distinct and combined proximity effects. Finally, the proximity con-

cept has strong conceptual overlaps with the network concept. Instead of emphasizing 

                                                 
6  For an in-depth discussion see, Kudic (2012). 
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the structure on overall network level, however, the emphasis here lies on the dyadic 

characteristics of actor pairs. 

It explicitly acknowledges the importance of social interaction by integrating a net-

work proximity dimension. In a recent study, Boschma and Frenken (2010) apply the 

original proximity concept (Boschma 2005) to explain to what extent selected proximity 

dimensions affect the spatial evolution of innovation networks. For the purpose of this 

study three dimensions are of primary interest: geographical proximity, social (network) 

proximity and technological proximity. 

To start with, we take a closer look at geographical proximity. Firms can benefit 

from geographical proximity in many ways (cf. Boschma, 2005; Boschma & Frenken, 

2010). For instance, frequent direct communication and face-to-face contact facilitate 

the exchange of tacit knowledge (Von Hippel, 1994). Short distances simplify the ex-

change of information and enable interactive learning processes. Information provided 

via these channels may enable firms to become aware of new cooperation opportunities 

earlier than others. Thus, it is plausible to assume that regional environments can sim-

plify the search for potentially new cooperation partners. Geographic proximity can also 

be accompanied by negative effects. Boschma (2005) argues that highly specialized re-

gions can become inward looking due to spatial lock-in effects and a lack of openness to 

the outside world. As a consequence, geographic proximity may also hamper a firm's 

willingness to initialize new partnerships, depending regional characteristics. 

The conceptualization of social proximity has its intellectual roots in the social 

embeddedness literature (Granovetter, 1985; Uzzi, 1996), which envisions interactions 

and relations in the economic sphere as always embedded in a social context. A firm's 

embeddedness and strategic positioning in the industry’s innovation network is likely to 

affect its future cooperation activities. Likewise, its cooperation history provides impor-

tant signals to other firms and organizations in the industry. Connections to high-quality 

partners allow firms to build up reputation (Podolny, 1993; Podolny, 1994). Thus, the 

network structure itself can provide important signals to other market actors to judge an 

organization's reliability. For the purpose of this study we follow the structuralist net-

work approach. From this perspective, social proximity can be measured by the indirect 
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relationship through common third party ties between ego and alter (referred to as tran-

sitivity or triadic closure), which facilitates the initial creating of ties (Granovetter, 

1973). However, social proximity can also have a negative effect on the innovative per-

formance in cases when firms are too densely embedded. Uzzi (1996; 1997) has coined 

the term ‘overembeddedness’ to address this phenomenon. 

Finally, we also address the technological (also referred to as cognitive) dimension of 

proximity. Learning theory suggests that the ability to receive and process new higher 

level knowledge is ultimately constrained by an actor’s absorptive capacity, which is a 

function of related lower level knowledge (Cohen & Levinthal, 1990). As a conse-

quence, cognitive or technological proximity becomes crucial to determine the perfor-

mance of collaborative knowledge transfer and creating processes. High cognitive prox-

imity indicates a large overlap between the interacting agents’ knowledge bases and 

thus a high relative absorptive capacity, which facilitates collective learning and 

knowledge creation (Simonin, 1999). In contrast, without some basic shared knowledge 

and common understanding, learning processes between actors become increasingly dif-

ficult (Mowery et al., 1996). On the other hand, the more congruent the knowledge ba-

ses of actors are, the less the generic potential of collaboration to create innovative re-

sults by the means of combining formerly unrelated knowledge fragments, To summa-

rize, all forms of proximity appear to have a bright as well as a dark side, depending on 

their extent and contextual factors. The quest to identify the optimal degree of proximity 

yet remains an empirical one. 

4.3 Industry Life-Cycle 

Nearly at the same time when the Neo-Schumpeterian approach started to flourish, 

new interest in the laws of motion and industry development re-emerged (Hanusch & 

Pyka, 2007). The intellectual roots of life-cycle theory, however, go back much further 

in history. Kuznets (1930) was among the first to examine the internal dynamics of cer-

tain industries which appeared to happen in waves over time. The most important styl-

ized fact of structural dynamics is the industry life-cycle hypothesis (Utterback & Aber-

nathy, 1975). Since then, several other excellent studies in this tradition have enhanced 

our understanding of how industries change over time (Jovanovic & McDonald, 1994; 
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Klepper, 1997; Buenstorf, 2007; Buenstorf & Klepper, 2010). By now we know that not 

all industries follow idealized life cycle patterns. The reasons there for are manifold. 

Some industries may be seen as evolving through this cycle several - possibly overlap-

ping - times. This is mainly due to repeated radical innovations in these industries. Oth-

ers have emphasized the importance of submarket dynamics in this context (Buenstorf 

& Klepper, 2010). Their findings suggest that the development of a new submarket can 

open up opportunities for newcomers and stimulate innovation at the same time. They 

show that this situation can reinforce the advantages of the leading incumbents, accen-

tuating the shakeout of producers. 

4.4 Hypotheses development 

Keeping in mind the preceding theoretical considerations, we develop now a set of 

testable hypotheses. Based on Pavitt’s (1984) taxonomy we differentiate between scale-

intensive and science-based industries. We assume to find systematically different pat-

terns of network dynamics due to a different life-cycle stage of the two focal industries.  

To start with, we address the relationship between various facets of social proximity 

on network evolution in science-driven and matured industries. Moreover, our line of 

arguments relates to a firm’s cooperation experience. With each new R&D cooperation 

a firm passes through a learning process of how to successfully initiate, establish and 

manage this partnership successfully. The firm learns how to implement cooperation 

routines in order to reduce costs and increase managerial efficiency (Goerzen, 2005). In 

other words, a firm can benefit from each cooperation event by building up what is fre-

quently referred to as cooperation (or alliance) capabilities (Kale et al., 2000; Schilke & 

Goerzen, 2010). At the same time it is important to note that previous connections to 

high-quality partners allow firms to build up reputation and status which is an important 

signal to other market actors (Podolny, 1993; Podolny, 1994). We assume that both the 

ability to build up cooperation capabilities and gain reputation and status from preced-

ing cooperation events is unequally pronounced in the two industries. One the one hand, 

LSMs in the German laser industry is on average significantly smaller and firms are on 
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average younger compared to OEMs in the German automotive industry.
7
 They have 

not the same resource endowment and time horizon like long-established large firm 

have. Small and young firms are in general known to have higher failure rates (Freeman 

et. al., 1983), and limited cooperation capabilities. As a consequence, reputation effects 

stemming from successful past cooperation can be assumed to be of higher value in sci-

ence driven industries. These arguments inform our first hypothesis.  

H1: Cooperation experience affects a firm’s propensity to build new R&D 

ties; the effect is expected to be more pronounced in a science-driven 

industry. 

Next, we turn to a more structuralist oriented line of argument by focusing on transitivi-

ty in large-scale innovation networks. Transitivity is a structural effect which refers to 

an actor’s position in a network (Davis, 1970; Buchmann & Pyka. 2013). In the most 

basic sense, it stipulates that two alters with direct linkages to a focal actor have a high-

er probability to build a tie among each other rather than with other actors. The ration-

ales behind this connection mechanism are straightforward. The shared common alter 

might introduces both yet unconnected actors, and some of this actors reputation and 

creditability is likely to be transferred also to her other network partners. Previous stud-

ies show that social cohesion breed trust (Buskens & Raub, 2002, Walker, et al., 1997). 

For instance, Reagans and McEvily (2003) demonstrate that strong social cohesion 

around a relationship reinforces the willingness to share knowledge. We argue that 

structural network effects are not industry specific. Instead they are first and foremost 

determined by the very nature of the network’s structural configuration itself. Thus, we 

assume that transitivity is an important factor of tie formation processes for both indus-

tries. In line with previous studies (e.g. Ter Wal, 2011), we interpret the structural effect 

of transitivity as an operationalizable measure of social proximity. 

H2: Social proximity (measured by ‘triadic closure’) affects a firm’s pro-

pensity to build new R&D ties; the effect is expected to be not industry 

specific but rather determined by the network structure itself. 

                                                 
7  For descriptive statistics on both industries, see Table 1. 
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According to Oerlemans & Meeus (2005, p. 94) research on geographical proximity 

can be grouped in two broad strands: one which focuses on spatial (or face-to-face) in-

teraction and interactive learning (Saxanian, 1990, Maskell & Malmberg, 1999) and one 

focusing on spatially mediated knowledge spillovers (Feldman, 1993; Audretsch & 

Feldman, 1996). Proponent of the first strand would agree upon the argument that geo-

graphical proximity is likely to breed trust among actors located in the region. This, 

however, is likely to affect their willingness to initially form a R&D cooperation. On the 

one hand, the knowledge spillovers perspective acknowledges the partially non-rival, 

dynamic and cumulative character of knowledge (Oerlemans & Meeus 2005) and puts 

forward the argument that knowledge tends to spill over locally between firms of the 

same industry – so-called intra-industry or MAR externalities (Marschall, 1890; Arrow, 

1962; Romer, 1986) – or between firms of different industries – so-called inter-industry 

or Jacobs externalities (Jacobs, 1969). In this study we especially focus on intra-industry 

knowledge spillovers, again contrasting science-driven and scale-intensive industries.  

Firms in science-driven industries usually develop and produce highly specialized 

products and services. To do so, they depend on a range of diverse and, at the same 

time, highly specific stocks of applied and basic knowledge. Strategic cooperation in 

R&D provides an important channel to reach beyond the organizational boundaries and 

get access external knowledge stocks. Against this backdrop, it is plausible to assume 

that geographical co-location plays a subordinated role when knowledge is highly spe-

cific, scant and decisive for a firm’s development process. In other words, firms in sci-

ence-driven industries search for the R&D cooperation partners that provide them with 

expertise, information and knowledge they need, irrespective of whether they are co-

located geographically or not. In scale-intensive industries the picture looks slightly dif-

ferent. Generally, the motives to cooperative in large and scale intensive industries often 

follow a quite different logic. For instance, in the automotive industry it is not unusual 

that strategic suppliers build subsidies in the direct neighborhood of automotive manu-

facturers to minimize transportation and other transaction costs. Similarly, when it 

comes to knowledge transfer and interorganizational learning processes the choice of 

partners is likely to follow a different logic. Products and services are much more stand-

ardized compared to science-driven industries. Accordingly, the knowledge stock of 
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firms operating in scale-intensive industries is usually more homogenous and less spe-

cific. This substantiates the assumption that firms in scale-intensive industries can 

choose from a much wider range of potential R&D cooperation partners to complement 

their incomplete knowledge base. Hence, other determinants, such as geographical fac-

tors, become more relevant for cooperation decisions. Hence, we assume:  

H3 Geographical proximity (measured by geographical co-location) af-

fects a firm’s propensity to build new R&D ties; the effect is expected 

to be more pronounced in a scale-intensive industry. 

Last but not least, cognitive proximity is an important explanatory factor for R&D 

cooperation processes. The notion of technological proximity refers to “shared techno-

logical experiences and knowledge-bases” (Knoben & Oerlemans, 2006). Thus, it does 

not express the similarity of technological equipment, processes etc., but rather reflects 

the similarity of the underlying knowledge-bases (Buchmann & Pyka, 2013). This un-

derstanding is very similar to the cognitive proximity as described by Boschma (2005). 

Firms in science-driven industries are in many cases highly specialized as they draw 

upon very specific stocks of basic and applied knowledge to generate a narrow set of 

products and services. Previous literature shows that one of the main cooperation mo-

tives for these firms is to exchange knowledge and learn from each other throughout the 

cooperation process. It has been argued that firms need a certain level of absorptive ca-

pacity (Cohen & Levinthal, 1990) to identify and make use of external knowledge. The 

cognitive or technological dimension of proximity addresses the similarity or dissimilar-

ity of knowledge stock of potential cooperation partner. The cooperation incentives for 

firm with very similar technological knowledge stock are quite low whereas firms oper-

ating in entirely different technological fields have no common denominator to cooper-

ate in R&D. Thus, it is plausible to assume that firms operating in the same technologi-

cal field choose R&D cooperation partners with a common technological understanding 

but which a rather dissimilar knowledge base. Against the backdrop of the previously 

outlined arguments, this effect is expected to be more pronounced in science-driven in-

dustries due to the higher specificity of the underlying knowledge base, and the higher 
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heterogeneity of competences needed in the innovation process. In summary, this leads 

to our last hypothesis:  

H4 Technological distance is positively related with a firm’s propensity to 

build new R&D ties; the effect is expected to be more pronounced in a 

science-driven industry. 

 

5. Data sources and variable specification 

In the following section, we provide a detailed description of both datasets utilized in 

our empirical investigation. Even though the dataset structures of both industries are 

very similar, data came from different raw data sources. 

5.1 Industry data 

Industry data for the German laser industry came from a proprietary database origi-

nally compiled by Guido Buenstorf (2007) and provides exact information on entries 

and exits of German laser source manufactures between 1960 and 2005.
8
 Based on this 

initial dataset we collected additional information on firm entries and exits after 2005. 

For the purpose of this study, we consider the business unit or firm as the relevant level 

of analysis: corporate level entities are decomposed and broken down into the business 

functions or market segments they serve. Furthermore, we include predecessors of cur-

rently existing firms in our sample. Firm exits as a result of mergers, acquisitions, or in-

solvencies, as well as different modes of population entries, such as new company for-

mations or spin-offs from existing firms or PROs, are treated separately.
9
 We end up 

with an industry dataset encompassing 233 LSMs over the full period under observa-

tion. To ensure comparability with our second dataset we restrict the observation period 

to the time span between 2002 and 2006. After excluding firms not showing any R&D 

cooperation or patenting activity during the observation period and five years prior to, 

our final dataset includes 73 firms. 

                                                 
8  We thank the LASSSI Project team, especially Guido Buenstorf, Matthias Geissler and Michael 

Fritsch for providing us access to data on the German laser industry.  

9  Three additional data sources were used: 1) updated German laser industry data, again provided by 

Guido Buenstorf; 2) annual laser industry business directories ("Europäischer Laser Markt") provided 

by the B-Quadrat Publishing Company; 3) data from the German trade register and Creditreform. 
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Same as for the Laser industry dataset we build a sample of German automotive firms. 

Since our reasoning is led by the knowledge-based view, we select firms based on the 

characteristic of their patent portfolio instead of, for instance, applying a standard indus-

try classification such as NACE. A scan of the patent portfolios of the German OEMs 

and the largest suppliers (OECD June 2010 Regpat database which is a supplemented 

extraction from Patstat) shows, that the 3-digit IPC class “B60” is strongest in the indus-

try. Thus, we take all firms which filed at least one patent application in this class within 

the observation period 1998 to 2006 and pick out those which are or were exclusively 

operating in the market for commercial vehicles or car accessory kits. Hence, we ex-

clude all firms which are not directly related to the production of passenger cars. We al-

so exclude firms which have not been involved in at least one of the examined research 

projects. This sampling resulted in 148 firms belonging to the studied network sample. 

5.2 Network data 

Network data based on joint cooperation in public funded R&D projects came from 

two electronically available archival sources: 1) the Förderkatalog database provided by 

the German Federal Ministry of Education and Research (BMBF) and 2) the CORDIS 

database provided by the European Community Research and Development Information 

Service (CORDIS). Both sources provide detailed information on the starting date, du-

ration, funding, and characteristic features of the project partners involved.  

For both datasets we use information on publicly funded R&D cooperation projects. 

There are good arguments for the use of these archival data sources in analyses of the 

evolution of innovation networks and we are not the very first to do so.
10

 With regard to 

publicly R&D cooperation projects subsidized by the German federal state there are 

good reasons to assume that participating organizations have strong incentives to inno-

vate as they have to agree upon a number of regulations that explicitly facilitate mutual 

knowledge exchange and the generation of novelties (Broeckel & Graf, 2011). Basically 

the same argument holds true for European framework program. The EU has funded 

thousands of collaborative R&D projects in order to support transnational cooperation 

                                                 
10  For instance, Broekel & Graf, (2011), Fornahl et al., (2011), Scherngell & Barber, (2009; 2011), 

Cassi et al., (2008). 
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activities, increase mobility, strengthen the scientific and technological bases of indus-

tries, and foster international competitiveness (Scherngell & Barber, 2009). Similarly, 

the enabling of knowledge transfer across partners and the enhancement of leaning 

processes are key elements of EU framework programs.  

Table 1: Network density indicators 

Period 1 2 3 4 5 

Laser industry 

density (degree) 0.015 0.014 0.014 0.018 0.019 

average degree 1.096 0.986 0.986 1.288 1.342 

number of ties 40 36 36 47 49 

number of actors 73 70 72 73 71 

Automotive industry 

density (degree) 2.243 1.851 1.514 1.595 2.676 

average degree 166 137 112 118 198 

number of ties 2.243 1.851 1.514 1.595 2.676 

number of actors 138 137 139 139 139 

Source: own calculation. 

Furthermore, information about firms participating in joint subsidized projects doc-

uments research activities at an earlier stage compared to patent data. R&D subsidies 

have become a frequently used instrument of innovation policy to spur collaborative re-

search for a number of reasons: First, due to the sheer scale of some projects, individual 

firms cannot afford to handle them alone. Second, knowledge transfer from public to 

private organizations is fostered by the participation of universities and other public re-

search institutes such as the Max Planck and Fraunhofer Institutes. Third, it represents a 

powerful tool to directly influence rate and direction of research activities with the 

means of public funding (Pavitt, 1998). The projects listed in the “Förderkatalog” are 

considered to contribute to knowledge transfer (Broekel & Graf 2010). The participants 

have to sign agreements explicitly stipulating that gained knowledge within the project 

will be freely shared among the participants. They even have to grant free access to their 

know-how and IPRs within the scope of the projects. They commit to actively collabo-

rate with the aim to find new solutions (BMBF, 2008). That this works out well has 
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been empirically validated by Fornahl et al. (2011). Table 1 provides some key indica-

tors on the structural characteristics of the laser and automotive networks for the years 

of observation 2002 – 2006. 

Table 2: Network dynamics: Tie changes per period 

Period/tie change 0 → 0 0 → 1 1 → 0 1 → 1 Jaccard 

Laser industry 

1 → 2 2,581 7 11 29 0.617 

2 → 3 2,576 16 16 20 0.385 

3 → 4 2,577 15 4 32 0.627 

4 → 5 2,571 10 8 39 0.684 

Automotive industry 

1 → 2 10,698 14 43 123 0.683 

2 → 3 10,727 14 39 98 0.649 

3 → 4 10,703 63 57 55 0.314 

4 → 5 10,655 105 25 93 0.417 

Source: own calculation. 

The dynamics of tie creation (0→1), dissolution (1→0) and maintenance (1→1) in 

both networks are provided in table 2. The application of stochastic actor-oriented mod-

els, as we do during the course of this paper, requires the networks under observation to 

show a certain dynamic. However, too drastic structural changes between observation 

periods might indicate a violation of the gradual change assumption. To ensure suitable 

structural properties of our networks, we consult the Jaccard index
11 

provided in Table 

2, which is a common measure of similarity between two networks. Snijders (2002) 

suggest this index to have a value between 0.3 and 0.8, which is given in all periods in 

both networks under study here. Overall, the first inspection suggests a data structure 

suitable for utilizing stochastic actor-based models. 

                                                 
11  The Jaccard index as a measure of similarity between two network waves is computed by 

   

               
, 

 where     represents the number of ties stable over both waves,     the newly created and     newly 

dissolved ties in the second wave. 
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5.3 Patent data 

Three data sources were tapped to gather the patent data needed. The European Pa-

tent Office’s database (PatStat version: October 2012) was used as the primary data 

source to generate a complete overview of the firms’ patent activities.
12

 Additionally, 

two patent data sources accessible online – DEPATISnet German Patent and Trade 

Mark Office database & ESPACEnet European Patent Office database – were tapped for 

data completion and to check results for integrity and consistency. For our automotive 

industry dataset, we make additionally use of the OECD Regpat database. We employe 

a search procedure (cf. Kudic, 2012) based on firm ID lists to extract patent information 

for the firms in quest. Various ways of spelling each firm’s name were explicitly con-

sidered to deal with typing errors and misspellings. Patent applications are dated by us-

ing the application filing date. Information on patent families is used to avoid double 

counts of patents. Information on IPC classes is recorded for each patent. We end up 

with a patent data file encompassing a comprehensive list of all patent applications for 

both industries over the entire observation period.  

5.4 Variable specification 

Against the backdrop of our theoretical considerations and based on the data sources 

described above we specify four groups of independent variables: (I) organizational lev-

el, (II) geographical level, (III) network level, and (IV) technological level.  

(I) Organizational variables: we use information of the number of employees to con-

trol for firms of small (10-49 employees, size small), medium (50-249 employees, size 

medium), and large (250+ employees, size large, omitted) size. Since a larger size of the 

firm also indicates a higher capacity to manage multiple collaborations, we expect a 

positive impact on collaboration activity in R&D projects. 

Data from Germany's official company register ("Bundesanzeiger") is used to recon-

struct firms' age in years. With increasing age, firms are able to accumulate reputation 

and creditability, which supposedly makes them a more attractive collaboration partner. 

                                                 
12  Data access was provided by the IWH department “Formal Methods and Databases”. 
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However, after a firm has survived its first critical years and came over the “liability of 

newness (Freeman et. al., 1983), it also establishes a performance history and certain 

reputation. Thereafter, we expect the effect of age to diminish, what we operationalise 

with using the variable in its logarithmic transformation.  

(II) Geographical variables: Again, Germany's official company register data is used 

to reconstruct firms' current addresses and address changes for the entire observation 

period. We employed the ESRI ArcMap 10.0 Software package and a freely accessible 

geo-coding application
13

 to collect GPS coordinates (latitude and longitude) on an an-

nual basis for each firm in the sample. We then calculate the dyadic distances between 

all organizations. Geographical distance represents the geodesic distance between ego 

and alter in kilometer and is expected to negatively affect tie-formation processes. 

However, since with increasing distance actors may substitute means of transportation 

(car, train, plain, et cetera; cf. Sorenson & Stuart, 2001, 2008), we assume distance to 

have decreasing marginal effects, therefore again use this measure in its natural loga-

rithm.  

(III) Network variables: Bases on publicly funded R&D cooperation project data we 

specify several cooperation and network variables. We operationalise social proximity 

as the existence of a shared connection in form of a transitive triad between ego and al-

ter. As argued during the course of this paper, we expect social proximity to have a posi-

tive impact on tie-formation processes.  

A further very standard effect to be controlled for in actor-oriented models is given 

by the outdegree (degree), which is the number of currently existing ties of an actor and 

represents a measure of centrality in the current network. Since the amount of ties that 

can be managed by an actor at the same time is usually limited, this effect in most cases 

shows a negative coefficient.  

The amount of former participations in public funded R&D projects (cooperation ex-

perience) serves as a measure of accumulated reputation as well as experience in man-

aging this kind of projects. To avoid trends, we operationalize this variable as a five-

                                                 
9

 
 http://www.netzwelt.de/software/google-maps.html (accessed: Nov. 2011) 
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year moving window of cumulated R&D project participation. As argued during the 

course of this paper, we expect cooperation experience to positively affect collaboration 

behavior.  

(IV) Technological variables: Patent data is used to construct technological proximi-

ty indicators. Former patenting experience can be interpreted as a rough indicator for 

innovation capability and absorptive capacity. This variable is also constructed as an ac-

cumulation of activity in a five-year moving window. 

To calculate the technological proximity between actors, we apply the following ap-

proach. First we disaggregate the firm’s prior patenting activity in a five-year moving 

window by their assigned 3-digit IPC classes. Based on this patent count on the corre-

sponding patent classes, we calculate a vector which places each firm in an N-

dimensional space, where the number of dimensions is given by all patent classes firms 

in the corresponding industries showed activity during the observation periods.
14 

To 

avoid the inclusion of “outlayer” patents completely unrelated to the industry, we re-

move those patent classes only appearing only once in all periods. Second, a dyadic 

measure of Euclidian distance over all dimensions between the vector of firm i and all 

other firms j-N is calculated, where N represents the number of firms in the correspond-

ing industry network. Thus the technological proximity between two firms i and j is cal-

culated as formula 1 suggests: 

    
        

 = 1 -       
      

        
         (1) 

As already argued, we expect technological proximity to influence collaboration deci-

sions differently in science-driven and scale intensive industries. Since there exist sali-

ent arguments for this effect to be of non-linear nature (e.g. Nooteboom et. al., 2007, 

Gilsing et al., 2007; Wuyts et. al., 2005), we also use the squared transformation to test 

for inversely U-shaped one.  

                                                 
14 To give an example, a firm i shows patenting activity in some five-year moving window of 4 patents 

in IPC class B60, 6 patents  in IPC class 29, and 0 in all other classes. Its corresponding vector 

would be (p1; pB29; …; pB60;…; pN) = (0; …; 0.6;…;  0.4; …, 0). 
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Table 3: Descriptive statistics 

Variable Min. Max. Mean Std. Dv. 

Laser industry 

Firm level controls     

age 0.693 3.584 2.037 0.638 

size small 0.000 1.000 0.717 0.451 

size medium 0.000 1.000 0.200 0.401 

Experience     

cooperation experience 0.000 9.000 1.277 2.002 

patenting experience 0.000 6.935 1.807 1.503 

Proximity     

geographical proximity 0.000 6.588 1.123 2.288 

technological proximity 0.000 1.000 0.340 0.265 

Automotive industry 

Firm level controls     

age 0.693 6.082 3.699 1.152 

size small 0.000 1.000 0.764 0.425 

size medium 0.000 1.000 0.142 0.349 

Experience     

cooperation experience 0.000 125.000 5.216 15.324 

patenting experience 0.000 8.646 2.819 1.946 

Proximity     

geographical proximity 0.000 6.515 1.264 0.904 

technological proximity 0.000 1.000 0.758 0.204 

Source: own calculation. 

Table 3 provides an overview of basic descriptive statistics on the variables utilized 

for both industries. All variables utilized for statistical analysis are dynamic of nature. 
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6. Modelling network evolution 

The analysis of dynamic actor networks represents an empirical challenge which 

calls for distinct statistical models and methods. Drivers of tie formation processes in 

social settings, such as transitivity, reciprocity and popularity effects, by their very na-

ture lead to endogeneity and dependencies of observations, thus violate most standard 

statistical model types (Steglich et al., 2010). 

6.1 Principles of stochastic actor-based models of network dynamics 

The class of stochastic actor-oriented models (SAOM) originally developed by 

Snijders (1996, 2001) represent an attractive solution, which scholars just recently start-

ed to deploy in the context of inter-organizational innovation networks (e.g. Balland, 

2012; Giuliani, 2010; Hain & Jurowetzki, 2013; Ter Wal, 2011). In contrast to the quite 

restrictive log-linear approach for modeling network dynamics (e.g. Holland and 

Leinhardt, 1977; Wasserman, 1979), SAOM are able to jointly analyse multiple endog-

enous structural effects, such as tendencies toward transitivity or structural balance and 

also allows for continuous variable scales. In its core, SAOM combine a random utility 

model, continuous time Markov process, and Monte Carlo simulation. Given the con-

text of the study, we consider SAOM as the most suitable class of dynamic network 

models and deploy it for the empirical analysis to follow. 

Originally, SAOM was developed in a sociological context and designed to model 

group dynamics in interpersonal networks (e.g. Van De Bunt et al., 1999). However, ac-

tor oriented modeling is also particularly suitable to depict the interaction between mac-

ro outcomes and firms’ micro choices (Macy & Willer, 2002) in inter-organizational al-

liance formation process. Here, the network structure is based on individual firms’ 

choices, which are assumed to be driven by the expected amount of utility derived from 

the selection of collaboration partners with respect to individual, dyadic, structural and 

environmental determinants. 

Snijders (1996) firstly proposed to address the problem of multiple endogeneity in 

the evolution of social network with transforming discrete datasets of panel waves into a 

continuous set of changes to be estimated as a Markov-chain. Unobserved changes be-
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tween the waves are simulated as continuous actor choices at stochastically determined 

points of time. Formally, following a Poisson function of rate λi, the actors are allowed 

to create, maintain, or dissolve ties until the network is transformed to the new structure. 

The decision of actor i to change the state of one tie to another actor j leads to a new 

overall state of the network χ, where the probability Pi for choosing this structure is giv-

en by: 

Pi(  , χ,   ) = 
         

        

         
                 

      (2) 

It technically resembles a multinomial logistic regression, modeling the probability 

that an actor chooses a specific (categorical) new network configuration Pi as propor-

tional to the exponential transformation of the resulting networks objective function fi(.), 

with respect to all other possible configurations. The parameters coefficients are step-

wise adjusted by Monte Carlo simulation techniques in order to obtain convergence be-

tween the estimated and observed model, and finally held fixed to allow their compari-

son and post-estimation analyses. The objective function contains actor i’s perceived 

costs and benefits of a particular network reconfiguration leading to a network state χ, 

which are represented by the random utility model: 

    
                 

                         (3) 

It depends on the current state of the network   , the potential new one  , the ego i’s 

and alter j’s individual characteristics    and   , their dyadic covariates    , exogeneous 

environmental effects e, and a random component r capturing omitted effects. Underly-

ing assumption is that the actors observe current structure of the network  0
 and the rel-

evant characteristics of its actor set and make their collaboration decisions in order to 

optimize their perceived current utility (Jackson & Rogers, 2007). 

6.2 Model specification 

Based on joint participation in public funded R&D project, we construct yearly co-

operation networks for both industries under observation. Formally, we transform the 2-

mode network of actor and project affiliation in a 1-mode network in a way that all pro-
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ject participants are connected equally with undirected ties. Conceptualizing connec-

tions in these R&D networks as clique networks with undirected ties appears as most 

suitable since frequent interaction and a free flow of knowledge between all project par-

ticipants can be expected. To depict the evolution of networks with undirected ties, we 

use a unilateral initiative and reciprocal confirmation model, as suggested to be most 

realistic in such settings by Van de Bunt and Groenewegen (2007). It operationalizes 

mutual tie formation decisions in two stages. First, by trying to optimize the utility of 

the individual objective function, actor i decides to form a tie with actor j. This collabo-

ration, however, only takes place if in the second step confirmed by actor j according to 

the outcome of its objective function.  

As outlined above, collaboration choices driving the evolution of the network are the 

outcome of the actors mutual attempts to optimize their expected utility with respect to 

their own and their potential alters’ characteristics and the current and potential network 

structure as perceived by them (Jackson &Rogers, 2007). Thus, in our model, the de-

pendent variable represents the probability of a tie between actor i and j to change its 

state from non-existing to existing. 

Technically, we make use of the SAOM application of SIENA
15

 (Ripley et al., 2001), 

a package for the statistical environment of R. 

7. Results and discussion of main findings 

Table 3 provides the coefficients of the estimated stochastic agent-based simulation 

models for the German laser industry and the German automotive industry, respectively. 

Positive (negative) coefficients indicate that an increase in the regressor variable is as-

sociated with a higher (lower) transition probability. All coefficients are reported in 

standardized version, divided by their mean. 

Good convergence of parameter values estimated by the simulation and their corre-

sponding observed real values is reached if the t-values are smaller than 0.1 (Snijders et. 

al., 2010) which we find for all variables of the objective function. 

                                                 
15  “Simulation Investigation for Empirical Network Analysis”. The RSiena package is freely available 

on the CRAN website: http://cran.r-project.org/web/packages/RSiena/. 
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To test for time-variant exogenous effects, such as varying qualitative and quantita-

tive preferences to fund research projects with certain characteristics, we conduct the 

score-test of time-heterogeneity proposed by Lospinoso et al. (2011). The results indeed 

indicate the heterogeneity of tie creation over time, most pronounced in firm level char-

acteristics, for which we account with including time dummies interacted with the actor 

outdegree. 

Table 3: Estimated results form a stochastic actor-oriented model 

 Laser industry Automotive industry 

 Model I Model II Model I Model II 

Variable Coeff SE Coeff SE Coeff SE Coeff SE 

 
Network effects 

degree central-
ity 

-2.339*** 0.183 -2.361*** 0.193 -2.186*** 0.064 -2.190*** 0.063 

 
Firm level controls 

age 
 

-0.428*** 0.189 -0.485* 0.200 -0.087 0.053 -0.091 0.053 

size small 
 

0.300 0.372 0.077 0.310 0.271 0.227 0.265 0.234 

size medium 0.478 0.380 0.195 0.191 0.199 0.261 0.187 0.262 

 
Experience 

cooperation  
experience 

0.160*** 0.035 0.168*** 0.037 0.014*** 0.003 0.014*** 0.003 

patenting  
experience 

0.189*** 0.085 0.083 0.104 0.067* 0.035 0.056 0.049 

 
Proximity 

social  
proximity 

  0.986*** 0.137   0.477*** 0.032 

geographical  
proximity 

  -0.473** 0.163   0.081* 0.036 

technological  
proximity 

  -0.808* 0.410   0.236 0.233 

Note: *, **, *** indicate p-values < 0.05, 0.01, 0.001 

Source: own calculation. 

The estimated experience parameters provide evidence for the suggestion that expe-

rience in cooperation is a factor which influences the propensity to cooperate. In par-
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ticular, firms having more experience in cooperation are more open to participate in col-

laboration projects (select partners and be selected as a partner). The estimation results 

confirm Hypothesis H1 which proposes that the effect is stronger in a science-driven 

(laser) compared to a scale-intensive (automotive) industry. We assume that the differ-

ences are related to three factors: First, reputation is a particular important asset in sci-

entific communities and experience is a strong indicator for reputation since only actors 

having a high level of reputation are attractive for cooperation. Second, experienced ac-

tors signal that they are trustworthy partners. This is a highly valued asset in a young 

industry in which the level of uncertainty is high and transferred knowledge is predomi-

nantly of tacit nature. Third, liability of newness (Freeman et. al., 1983) describes the 

tendency for younger firms to have a higher risk of failing compared to more experi-

enced firms. In young industries which consist of many inexperienced firms, experi-

enced firms which already know “the rules of the game” are particularly attractive as 

cooperation partners 

Hypothesis 2, which suggests a high cliquishness among network partners, is also 

confirmed for both industries, where it is more pronounced in the science-driven (laser) 

one. This indicates a significant endogenous network effect leading to the formation of 

cohesive triadic subgroups caused by trusted partnerships. Information scarcity about 

the reliability of partners gets mitigated by the use of existing partnerships as infor-

mation sources. The finding is in line with studies performed for other industries. Ac-

cordingly, it can be considered a general effect which always plays a role for innovation 

network evolution. However, it appears to be more pronounced in our science-driven 

industry, indicating the higher importance of trust based determinants of collaboration 

decisions in more explorative settings. 

Hypothesis 3 indicates an inverse relationship between the propensity to cooperate 

and geographical proximity. We assume that this effect is stronger in the scale-intensive 

industry due to the relative strength of local or regional firms in knowledge generation. 

Interestingly, the effect of geographical proximity turned out to be positive only in the 

automotive, while negative in the laser industry. We believe that the sources of relevant 

knowledge are more dispersed in the laser industry, i.e., interesting cooperation partners 
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are not necessarily located in close geographical distance but might have their seat in 

another region or even another country. Consequently, ties are not formed to the same 

extent as in the automotive industry with firms from within a geographic cluster. Thus, 

one might speculate the role of geographical proximity to be moderated by the hetero-

geneity of the local/regional knowledge base. 

Hypothesis 4 addresses the role of technological proximity in the structural evolution 

of innovation networks. For the science-driven laser industry, we are indeed able to 

provide first evidence of its effect, even though only statistically significant at the ten 

percent level. The coefficient for technological proximity, operationalized as the Euclid-

ian distance between the vectors of both firms cumulated patenting activity in relevant 

IPC classes, shows with twice the value of geographical proximity a relatively high 

negative value. This means firms of the laser industry show a preference to team up for 

research projects with partners that provide them with complementary and diverse 

knowledge rather than with firms of similar competence. This reflects the interdiscipli-

nary and explorative nature of the industry, where the access to knowledge and compe-

tences from a variety of distinct research fields is vital to secure a firm’s long-run com-

petitive advantage. For the automotive industry on the contrary, we do not find any sig-

nificant effect of technological proximity on the firms’ cooperation decisions. 

8. Conclusion and avenues for further research 

During the course of this paper, we have explored the evolutionary nature of alliance 

formation pattern in innovation and research networks. In particular, with drawing from 

and firstly combining, two very rich datasets on the German laser and automotive indus-

try we contrast these processes in a young science-driven industry as well as a matured 

scale-intensive one.  

Combining Neo-Schumpeterian thoughts with industry life-cycle theories, Pavitt’s 

taxonomy of industries and Boschma’s proximity concepts, we develop hypotheses de-

rived from different strands of theory, and test them taking advantages of recent ad-

vances in dynamic network analysis. Deploying a stochastic actor-oriented model, we 
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are able to reveal forces of network change which appear to substantially differ between 

younger science-driven and fully matured scale intensive industries. 

We indeed find the effects of experience and reputation, as well as the social, geo-

graphical and technological dimensions of proximity to affect network formation pro-

cesses significantly but yet differently pronounced in the two industries under study. 

Cooperation experience matters in both industries. Same holds true for social (network) 

proximity. These findings shed light on the importance of the social dimension of net-

work development, which appears, as hypnotized, to be stronger in more explorative 

and science-driven settings. Geographical proximity has a significant impact in both in-

dustries, surprisingly in different directions. While R&D projects tend to cluster geo-

graphically in the automotive industry, firms in the laser industry seem to search out for 

partners in distance. This might reflect the strong dependence on access to diverse ex-

ternal knowledge, which cannot be found in homogenous local clusters. First results on 

the effect of technological distance support this argument. Firms in the laser industry 

indeed seem to search partners with very different knowledge-bases. 

The overall results of our analysis highly convince us of the fruitfulness of this ave-

nue and call for further research. Indeed, there are still a lot of open questions to be ad-

dressed in order to provide a more comprehensive understanding of evolutionary pro-

cesses in the formation of research and innovation networks. Firstly, we still believe in 

the importance of technological proximity as a main driver of alliance decisions. In our 

analysis, we operationalise firms’ knowledge bases with utilizing patent data, which ap-

pears reasonable due to the high importance of them in both industries. However, using 

patent data tends to over-pronounce knowledge related to product innovations compared 

to process and organizational innovation. In practice, very well a combination of tech-

nical product features and process/organizational knowledge might offer particularly 

beneficial synergies, which we are not able to capture with our measure. Thus, utilizing 

more fine-grained measures for firm competences is likely to reveal further insights on 

that issue.  
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