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Learning-by-modeling: Insights from an
Agent-Based Model of University–Industry

Relationships

GIORGIO TRIULZI1 and ANDREAS PYKA2

1UNU-MERIT, Maastricht University, Maastricht, The Netherlands
2University of Hohenheim, Stuttgart, Germany

Learning is at the base of the so-called knowledge society. New
forms of learning able to more effectively challenge the complex
nature of phenomenon surrounding us are increasingly necessary.
In this article we argue that learning-by-modeling, through a
double-loop learning process, can significantly contribute to the
refinement and improvement of our knowledge of complex
phenomena. To sustain this argumentation, we make use of the
insights provided by an agent-based model of university–industry
relationships.

KEYWORDS agent-based modeling, double-loop learning,
university–industry relationships

INTRODUCTION

In what is increasingly thought of as a ‘‘knowledge society’’ (World Bank
1999), continuous learning is claimed to be a fundamental requirement upon
which knowledge and economic growth are built. In a complex world
learning is not an easy task—on the contrary, learning is itself a complex
phenomenon. In terms of a taxonomy, different forms of learning have
been identified as so-called learning-by-concepts (Malerba 1992), of which
so-called learning-by-doing is most prominent. A particular form of
learning-by-doing, which concerns research activities, can be labeled
learning-by-modeling: A problem of interest is described in an abstract form
in an equation system and the static as well as dynamic features of the model
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are analyzed. The insights gained are applied to generate a better under-
standing of the underlying problem.

Choosing an adequate mathematical representation as well as an
adequate degree of complexity reduction to trace the model analytically is
anything but an easy task. For instance, researchers in economics face a severe
trade-off between the complexity of the problem under investigation, which is
characterized by multi-agent dynamics and often self-reinforcing processes
and the scope of an analytical framework that, at best, can give a detailed
partial picture of a multifaceted reality, in particular concerning the dynamic
features. In such contexts, agent-based modeling (ABM) is increasingly con-
sidered as a promising alternative (Tesfatsion and Judd 2006; Pyka and
Fagiolo 2007); on the one hand, it builds upon theories and empirical evi-
dence; on the other hand, it integrates them, suggesting different and more
comprehensive ways to look at complex phenomena, thus providing the
potential to explain results that otherwise might look contradictory. Modeling
experience can be viewed as a learning process itself: it is an adaptive struggle
in a world full of complexity. In this struggle we often become aware of
how little we know about the actual problem under investigation.

The aim of this article is to discuss howABMmethodology can contribute,
through a learning-by-modeling process, to increase our understanding of
complex phenomena. We will make use of a model of university–industry
relationships (UIRs) in the biotech and pharmaceutical sectors that focuses
on interactions and the underlying knowledge dynamics between hetero-
geneous agents involved in the research process. A detailed description of
this model and of the simulation results can be found in Triulzi et al. (2009).
For the purpose of this article we will use this modeling experience to sustain
our argumentation. Note that many other ABMs can serve the same purpose.

The article is organized as follows: We start with a conceptualization of
modeling as a double-loop learning process; then a brief description of UIRs
as an example of a complex phenomenon characterized by multifaceted
aspects and unclear empirical evidence will be presented. This prepares
the ground for claiming the necessity of a more complex-friendly way of
analysis: ABM. Then we provide a concise description of the agent-based
UIRs model and introduce the main findings. Finally, a collection of insights
from the modeling experience will be summarized. We conclude by summar-
izing how agent-based UIRs model can be viewed as an example of
double-loop learning-by-modeling process.

MODELING AS A DOUBLE-LOOP LEARNING PROCESS

ABM can be thought of as a laboratory for theory improvement. Federici et al.
(2006) correctly pointed out that one of the main advantages of ABM,
compared to analytical modeling, is that ‘‘computer simulations are also
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considered as virtual experimental laboratories to study phenomena that are
difficult to observe directly’’ (p. 144). As Deichsel and Pyka (2009) and
Brenner and Werker (2007) argued, abductive methodologies, which consist
of starting by studying the facts, devising simple assumptions, and then going
back and forth between assumptions and their implications, are perfectly sui-
ted for a refinement of theory. ABM contributes to improving the understand-
ing of complex phenomena because the modeling experience is itself a
learning process. More precisely, modeling is intrinsically a double-loop
learning process. Indeed, as argued by Argyris and Schön (1996), two types
of learning can be distinguished: single- and double-loop learning. The dif-
ference concerns the refinement of the theories and the assumptions upon
which learning is grounded. The former is based on a mechanism of control
and correction. When the outcome of an action differs from its expected
result, a process of search and correction of the causes of the mismatch
begins. This process is based on feedbacks that are analyzed using the basic
knowledge of the actor, which, in single-loop learning, is an instrument of
the analysis but is not itself the object of learning. Contrariwise, double-loop
learning does not consider basic knowledge as a dictum. Hence, it includes
all kinds of involved knowledge. Double-loop learning is suited for the
investigation of complex phenomena because basic knowledge improve-
ments are foreseen. Without doubt, this is the case for modeling experiences.
Theoretical elements must be included in ABMs as well as a general aware-
ness of the stylized facts related to the research object. In the modeling pro-
cess, all of these elements are subject to validations that ultimately contribute
to advance our knowledge on the issue.

AN EXAMPLE: AN AGENT-BASED MODEL OF
UNIVERSITY–INDUSTRY RELATIONSHIPS

To sustain our reasoning, we choose as an example for modeling experience
our model of UIRs in the biotech and pharmaceuticals sectors. A brief
description of the model and its context help to familarize the reader and
provides a better understanding of the peculiarities of the double-loop
learning-by-modeling process.

A Complex Phenomenon: University–Industry Relationships

The way innovation is pursued in life sciences industries is deeply influenced
by the advent of the biotechnology paradigm and the spread of university
patenting. In this industry, UIRs have emerged as a major platform for knowl-
edge exchange and innovation. Despite their dramatic expansion and the
growing awareness in the economic and medical literature, there is only

486 G. Triulzi and A. Pyka



inconsistent and incomplete evidence with respect to the long-run effects on
the innovativeness of the research system.

On the one hand, many authors (e.g., Blumenthal et al. 1996; Geuna
2001; Angell 2004) have suggested that UIRs can potentially damage the
long-run innovativeness of the research system in life sciences. Following
this literature, UIRs have modified the reward system for academic research-
ers, introducing a personal and institutional incentive to conduct more
applied research. The possibilities to increase industry funding stemming
from the commercialization of academic research potentially push universi-
ties away from pure basic research in favor of more applied research, in
order to increase the probability of winding up with patentable research
outcomes. The consequences of this action might be harmful for the system
because it generates a situation in which fewer scientists and academic insti-
tutions are engaged in basic research, which is a fundamental component of
the whole system and necessary to continuously generate innovations.

On the other hand, many studies (e.g., Meyer-Krahmer and Schmoch
1998; D’Este and Patel 2007) have shown that an incentive for university
researchers to interact with industry is access to additional financial resources
and industry skills. Some authors (Markiewicz and DiMinin 2004; Breschi
et al. 2007; Azoulay et al. 2009) postulated the existence of a resource effect:
interactions with industry, providing larger cognitive and financial resources,
increase the productivity of academic scholars and university institutions in
terms of publishing and patenting, thus increasing their visibility, fame,
and reputation. A self-reinforcing virtuous circle is generated that ultimately
boosts research productivity.

This contradictory evidence worsens because there are few empirical
studies that take into consideration the system that surrounds these interac-
tions. The role of other actors, like the government, is largely neglected.
So is the bidirectionality of the knowledge and technology transfer between
universities and industry. Even if there are several studies focusing on the
nature of public research funding, this issue has been considered in isolation.
Studies have produced inconsistent evidence: some highlight complementa-
rities between public and private R&D, whereas others claim a substitutive
relationship (for a comprehensive literature survey, see David et al. 2000).

UIRs are clearly a complex phenomenon. Therefore, these relationships
call for a more comprehensive analysis that attempts to integrate the various
dimensions and extend our current knowledge.

In Praise of ABMs

The lack of a generally accepted evaluation of UIRs can be traced back to two
shortcomings: (1) the complexity of these relationships makes it difficult to
analyze their multiple correlated effects. However, the efforts to consider
the role of all the actors that are engaged in the biotech and pharmaceuticals’
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innovation systems and to analyze how these relationships affect each other
(i.e., universities, industry, and governments) are worth making. To focus
only on a selected group (e.g., universities or firms) is misleading. (2)
Traditional scientific tools have only limited possibilities to disentangle the
underlying complexity. Qualitative (interviews, case studies, theoretical stu-
dies, etc.) as well as quantitative analysis (surveys, econometric models, time
series, etc.) are extensively applied to study UIRs. They are extremely useful
to understand specific aspects of UIRs and to gain useful insights into the
complex relations. But they all miss a key issue; namely, the interaction
sphere dealing with knowledge flows between different actors.

Hence, we are in one of the frequent scenarios in which the complex
nature of the phenomenon under investigation leads to unclear empirical
evidence. How to shed light on this ambiguity?

We claim that UIRs are driven by the need to access and exchange spe-
cialized and generic knowledge by different actors. In a science-based and
knowledge-intensive sector, like biopharmaceuticals, actors are heteroge-
neously specialized in a relatively narrow knowledge space. This is true
for firms as well as for universities (though slightly less strict). The cumulative
nature of knowledge in these fields leads to the creation of a self-reinforcing
mechanism between, for instance, the accumulation of knowledge and
expertise and the generation of successful innovations. These mechanisms
are generally treated as a nuisance causing simultaneity or heteroscedasticity
problems. Obviously, when it comes to the empirical analysis of evolutionary
processes based on knowledge dynamics, a major problem as expressed by
Keith Smith emerges: ‘‘Neither learning nor the capabilities which result,
seem to be measurable in any direct way’’ (2005, p. 151). As shown by sev-
eral models belonging to the SKIN (Simulating Knowledge dynamics in Inno-
vation Networks) family (among others, Gilbert et al. 2001, 2007), knowledge
dynamics can be effectively analyzed through multi-agent simulations based
on interactions between heterogeneous and bounded rational agents. These
models show that knowledge dynamics have to be placed centrally because
they are the origin of agents’ successes=failures on a micro level and key to
understanding causes and consequences of aggregate phenomenon at the
macro level. We argue that ABM’s main strength is to allow a more compre-
hensive view of knowledge dynamics that allows for important additional
insights. Obviously, traditional analytical tools are not discarded. On the con-
trary, they provide stylized facts and contribute to theory formation. ABMs
build on them and allow going one step further: they integrate traditional
analyses and provide the prerequisites for substantial theory improvement.

The Model

The model is a multi-agent simulation that reproduces R&D and knowledge
dynamics in the biopharmaceutical sector, with a particular focus on the role
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of UIRs. We refer to a model of innovation networks originally developed by
Gilbert et al. (2001, 2007). This model is further refined in subsequent works
in which it has been applied to study a variety of issues related to knowledge
dynamics, learning, and collaboration between agents. We extend the orig-
inal model to reproduce the research environment of biopharmaceutical
industries, explicitly taking into account different classes of agents moved
by diverse aims and rewards (universities, biotech and pharmaceutical firms),
multiple channels of interactions (research collaborations, licensing and
sponsored research), and different research outputs (three classes of patents
and drugs). The goal of the model is to analyze knowledge dynamics
between the actors and to test the effects of agents’ interactions on their
knowledge base and, ultimately, on the innovativeness of the research
system with the help of simulation experiments.

TYPES OF AGENTS

The model’s population is composed of universities (UNIs), large diversified
firms (LDFs), and dedicated biotech firms (DBFs). There are two further
actors, a national research agency (NRA) and venture capitalists (VCs). These
latter agents are funding actors (of universities and biotech firms, respect-
ively) that are not actively engaged in research. With their research
efforts, agents follow different aims. However, all firm and university actors
undertake research and want to produce the best research outcomes.

Agents differ according to their knowledge base. The model’s repre-
sentation of the knowledge base of agents draws on the concept of kene
developed by Gilbert (1997) and applied in previous simulations of knowl-
edge dynamics in innovation networks. The knowledge base of each agent,
its kene, consists of a vector containing different units of knowledge called
quadruples. Each quadruple includes a research direction (RD), which allows
differentiation between universities (mainly engaged in basic research) and
firms (mainly engaged in applied research); a capability (C), which stands
for the particular technological discipline in which actors are engaged
(pharmaceutical or biotechnology); an ability (A), which reveals the actor’s
specialization in his or her field of capability; and an expertise (E), which
shows how long an agent has been active in a certain ability.

At the beginning of each simulation experiment, the model proceeds by
setting up the agents’ kenes. For every agent class, specific rules have been
defined. These rules allow distinguishing between different agents’ classes
while maintaining a fair level of intraclass heterogeneity. This is indeed
one of the most significant strengths of the ABM approach: it is possible to
define different classes of actors without losing heterogeneity even within
each class; in other words, agent-based models allow handling a sort of
squared heterogeneity. In our model we define different thresholds regard-
ing the distribution of starting research directions (RD) and capabilities (C)
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among the different actors, whereas the initial abilities and expertise levels
are less strictly (i.e., more randomly) defined. The number of kene elements
that each actor has is proportional to his size (the size of his capital stock).
However, some differences among the classes of actors exist. For instance,
UNIs have a larger number of kene elements—that is, a larger knowledge
base—than companies, ceteris paribus. A detailed table explaining kene
initialization for each class of agents can be found in the Appendix.

INTERACTIONS AND DECISION MECHANISMS

Agents have to make two important decisions. First, they have to allocate
their funds between the different research-related activities. The set of activi-
ties that can be undertaken differ between the agents in order to reflect vari-
ous interests and aims. Universities and DBFs can undertake their own
research projects and joint research projects and can be active agents (licen-
sors) in licensing agreements. University research can be sponsored by an
LDF, whereas this option is not available to DBFs. In this case, funding for
a university research project comes from an LDF, which, in turn, acquires
intellectual property rights related to the project’s results under the form of
a royalty-free license. LDFs can undertake own research or joint research
with DBFs, buy licenses from universities or DBFs, and sponsor university
research. Budget allocation over the set of research activities follows a satisfy-
cing behavior similar to Nelson and Winter’s (1982) evolutionary model.
Accordingly, agents initially decide how to allocate their budget randomly.
When firms are successful, they stick to the same allocation strategy. When
firms are not successful, they modify their strategy.

If agents decide to allocate part of their resources to joint research pro-
jects, the follow-up step is the choice of one or more partners with whom
they cooperate in a project. This is made according to two different partner-
ship strategies: a conservative strategy, which aims to find—concerning their
knowledge bases—similar agents, and a progressive strategy, which aims to
find different partners (according to an agent’s absorptive capacity; see also
Pyka et al. 2007). The actors that choose the former strategy aim to under-
take an incremental research project; therefore, they prefer less risk and a
common understanding. In this case, the variance between the knowledge
bases of the partners is small; this increases the probability of success but,
on the other hand, reduces the potential magnitude of the project outcome.
Instead, actors that choose to follow a progressive strategy aim to undertake
a radical research project. In this case, the variance between the knowledge
bases is high, with a positive effect on the potential innovativeness of the
project outcome but with a negative effect on the probability of success.
Agents also weigh their partners; this means that they will first look to pre-
vious partners with whom they have conducted a successful research project
in the past.
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THE ENVIRONMENT

The model’s environment plays an important role: agents are aware of
competition as well as the possibility to cooperate. Both options affect firms’
decisions.

Firms observe and evaluate competitors’ behaviors when they decide on
their allocation strategy between different research-related activities. Period-
ically firms compare their allocation strategy with the average allocation per
activity of the most successful firms; that is, those in the first quartile of firms
ranked according to their capital stock belonging to the same class (DBFs or
LDFs). If a firm is successful (meaning that it is in the first quartile), it does not
change its allocation strategy. Firms that are not successful gradually change
their strategy, imitating successful firms.

Agents can also opt for cooperation with other agents. The degree of
inter-agent cooperation again is influenced by the environment. A successful
firm that is extensively engaged in cooperation acts as a signal to other firms
that will urge them to adopt the same strategy. What makes collaboration a
factor of success is the knowledge exchange that comes with it. Indeed, as in
Gilbert et al. (2001), the process of one’s own and collaborative research is
based on the combination of selected elements of an agent’s knowledge
base, which forms a so-called innovation hypothesis (IH). In the case of joint
research, the project knowledge base is a combination of parts of the knowl-
edge bases of the involved agents. Some quadruples of the agents’ kenes are
randomly recombined to form a project innovation hypothesis. If the project
is successful, actors with an absorptive capacity (Cohen and Levinthal 1990)
above a critical threshold acquire the knowledge of the joint innovation
hypothesis that has been contributed by the project partner(s), though with
a reduced experience level. This enables agents that are engaged in collab-
oration to upgrade and expand their knowledge base.

MODEL’S DYNAMICS

Each simulation run consists of several iterations; that is, cycles of research. A
cycle starts when actors choose to start a joint research project, their own
research project, or both. In the former case, the actors look for partners
and subsequently jointly run the project (and share the project costs and
the ownership of the outcomes). In the latter case, the actors set up and
run the project in isolation. The project lasts several periods and finally is
evaluated. If the project is successful, a patent is granted. There are three
kinds of possible outcomes in the model, both for one’s own and joint
research projects (ranked from the most to the least innovative): (1) A-class
patent, (2) B-class patent, and (3) C-class patent. Which outcome is gener-
ated depends on the research direction of the project (a basic research direc-
tion increases the likelihood of obtaining an A-class patent) and on the
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variance of the involved capabilities (the higher the variance, the higher the
outcome’s value). The probability of success, which is positively related to
the agent’s experience level, is higher for an applied research direction
and negatively depends on the variance of the capabilities involved.

If the patent is granted to a university or a DBF, the patent holder enters
the market for research and tries to find an LDF willing to acquire the license
and to pay the related royalties. If the patent is originally granted to an LDF,
the firm can directly conduct clinical trials and try to develop a new drug to
earn revenues. Eventually, the actors reinvest the money that they have
gained at the end of the research cycle (from the license’s royalties or the
sales of the new drug) in new research projects and a new cycle begins.

RESULTS

Several Monte Carlo simulation experiments based on a standard and some
alternative scenarios were performed. Results of different scenarios are com-
pared and the appropriate tests of statistical significance are performed.

Results are shown in Figure 1. Panel A shows the dynamics of the aver-
age research orientation of universities for two simulation experiments: a
standard scenario in which universities are allowed to interact with industry
(both DBFs and LDFs) and a second one in which universities were the
only agents in the simulation population. One immediately notices that
in the latter case universities maintain a strong focus on basic research
(lower values of the average research direction). This shows that relation-
ships with industry do increase incentives for universities to engage in
applied research.

Panel B shows the results for the test of the so-called resource effect
hypothesis. On the vertical axis we find the percentage of innovative patents
(A-class) generated by universities relative to total university patenting.
Again, two simulation experiments were performed. In the case of interac-
tions between universities and DBFs (standard scenario), university patenting
was more innovative (larger percentage of A-class patents) than in the case in
which these interactions were not permitted (without_DBFs scenario). This
finding shows that universities do not enjoy cognitive resource effects related
to interactions with industry. We also tested the hypothesis of a financial
resource effect generated by licensing revenues from LDFs. The results in
terms of the relative number of A-class patents did not prove to be statistically
significant. However, we found that interactions with LDFs do increase the
total number of university patents but without influencing their innovation
value.

We also tested the effects of interactions with universities on DBFs’ inno-
vative capabilities. The percentage of innovative patents (A-class) out of the
total number of DBFs’ patents can be found on the vertical axis of Panel C in
Figure 1.
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The two lines represent the values of this percentage in two different
simulations: the standard scenario and a scenario in which universities were
excluded from the population (DBFs could not interact with them). The dif-
ference in the trends shows that DBFs greatly benefit from knowledge
exchange with universities. This shows that despite the missing cognitive
resource effects on the universities’ side, this effect is visible for the industry
partners. In other words, biotech firms benefit more than universities from
the knowledge exchange.

Finally, our simulation experiments showed that governments can
effectively reduce the harmful effects of UIRs on the universities’ research
direction. Higher incentives for basic research can be restored through a lar-
ger basic research public funding budget. This is shown in Panel D in
Figure 1. On the vertical axis we find the average research direction of uni-
versities. The different lines represent different scenarios in which the basic
research public budget is progressively increased (MAX_NRA_rd5=4=3). The
graph shows that a larger government basic research funding prevents the
shift of the research orientation of the universities from basic to applied
research.

FIGURE 1 Comparison between the different scenarios’ results.

Learning by Modeling 493



INSIGHTS FROM THE MODELING EXPERIENCE

The application of agent-based simulation methodology generates new
insights into the complex phenomenon of university–industry relationships.

Our experiments reject the hypothesis of a positive influence of a
cognitive resource effect on university innovative patent productivity and
partially reduced the influence of the financial resource effect. Nevertheless,
knowledge exchange processes are still a crucial characteristic of UIRs.
Intensive interactions between universities and DBFs do not seem to improve
universities’ innovative capabilities. This, however, does not mean that there
are no benefits from these interactions. Through joint research projects, an
exchange of knowledge between universities and biotech firms occurs.
These newly acquired capabilities and abilities expand the university knowl-
edge base, thereby increasing its heterogeneity, but this is not sufficient to
improve universities’ patent productivity. Many universities might not have
the right skills to deal with applied research; that is, they might not be experi-
enced enough to deal with a knowledge that is far from their traditional
research orientation. This effect is due to the fact that universities acquire
the kene elements that the DBF partner has contributed to the knowledge
base of the joint research project, but these kene elements add to a univer-
sity’s knowledge base with a basic level of experience only. This negatively
affects the probability that a following project using the newly acquired
knowledge generates an innovative outcome. A certain time lag is required
to master the new knowledge; hence, several attempts are required before
the new knowledge starts to be productively used in the following projects.

Our findings also show that when a complex phenomenon like UIRs
involving heterogeneous actors is analyzed, one has to consider all of its mul-
tifaceted aspects. In particular, our results show that UIRs cause a significant
increase in the innovative potential of biotech firms. This is due to a threefold
effect. First, interactions with universities expand DBFs’ knowledge bases,
allowing biotech firms to absorb new kene elements focusing on fundamen-
tal research. Second, they also increase the variance in their capabilities and,
third, they have a positive effect on DBFs’ networking experience. Therefore,
our results highlight the importance of UIRs concerning technology and
knowledge flows. These finding suggest that, in addition to universities,
new scientific knowledge is increasingly generated by biotech firms.

Finally, our results show that even if public and industry research fund-
ing are sometimes seen as substitute, in the biotech and pharmaceuticals they
are complementary. According to our results, government basic research
grants are crucially important to counterbalance the different aims and incen-
tives provided by industry, which further enlarge the market failure,
especially in the long run. Accordingly, government research policies should
be oriented to raise the public research funding budget with the aim to
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ensure that an adequate amount of fundamental research is undertaken by
universities.

DISCUSSION AND CONCLUSIONS

Today innovation activities are undertaken in extremely complex systems,
which are characterized by heterogeneous actors, multidimensional inter-
actions, and multiple knowledge flows. The increasing complexity creates
new challenges for scholars and can be disentangled only by the integration
of several methodologies.

We argue that ABM can play a key role in this respect. In particular,
the double-loop learning-by-modeling process challenges what we think
we know about the subject of the analysis. An example of this double-loop
learning process focused on UIRs has been provided. As argued by Argyris
and Schön (1996), double-loop learning starts from theory and refines it
through a verification and validation cycle in which the theory itself is
checked and improved. In a similar vein, Deichsel and Pyka (2009) recom-
mended that modelers should start with reasonably simple assumptions,
based on theoretical elements and stylized facts, and hence enter the process
of going back and forth between assumptions and implications. When the
researcher faces a complex phenomenon with multi-agent and multidirec-
tional interactions, a broad view is necessary. Nevertheless, understanding
what is driving the observed phenomena requires identification of the differ-
ent components of the system and how the various channels of interactions
affect them. Putting these components together and using them in a modular
way (see Mallavarapu et al. [2009] for an example in systems biology) allows
grasping how the system works as a whole. Such a modeling exercise shows
us what we do not know about the inter-component interactions and
automatically guides the direction of future research.

Figure 2 graphically illustrates our definition of a double-loop learning-
by-modeling process, as adapted from Argyris and Schön’s (1996) original
formulation.

FIGURE 2 Double-loop learning-by-modeling process.
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The reader who is familiar with the literature discussing the relation
between multi-agent-based simulations (MABS) and multi-agent systems
(MAS) may have noticed that the concept of double-loop learning by model-
ing also builds on the works by Edmonds (2001) and Federici et al. (2006).
The former defines the basic modeling relation as one in which the model
goes through a process of encoding a natural process (i.e., abstracting the
dynamics of the targeted system into an MAS), inference based on MAS simu-
lations, and decoding (analysis of results and interpretation back onto the tar-
geted system). Edmonds also pointed out that: ‘‘the above characterisation of
the MABS modeling process is simplified, in part because only rarely is direct
modeling attempted’’ (p. 271). The author argued that there are often several
other layers of models between the targeted system and the MAS. Federici
et al. highlighted this aspect and specified that ‘‘in a MABS reality is not
directly mapped in a MAS [ . . . ] but what that is mapped it is a model of
reality. This model is an intermediate step between reality and MAS’’
(p. 146). The double-loop learning by modeling methodology that we have
discussed in this work provides a helpful framework to deal with the inter-
actions between reality and modeling. Evidently it is not possible to fully
understand all of the interactions, causal relations, and variables that affect
a complex system in reality (if we could we would not have any research
question). Hence, it is necessary to start from an approximation of reality that
is based on the current state-of-the-art knowledge of the targeted system pro-
vided by empirical evidences, stylized facts, and theories. Assumptions upon
which the model is defined draw on these building blocks. The state-of-the-
art knowledge is further improved because the interpretation of the simula-
tions results during both the intermediate steps of testing the model and the
analysis of its final results can generate new evidence that, through a
double-loop learning process, can lead to new theoretical and empirical
insights. Of course, the contribution of the model is greater the larger the
gap between reality and the state-of-the-art knowledge. Theories, empirical
evidence, and MABS have to build on each other. Paraphrasing Edmonds
(2001), we argue that theories and evidence help understanding what the
truly relevant aspects of the targeted system’s structure to be included in
the MAS are. Furthermore, it is important to consider theories and evidence
as flexible scientific constructs that can be changed and improved in the
interpretation step of the modeling process.

In the case of the UIRs model, we used as initial inputs of the modeling
process a combination of theories and insights gained from some empirical
evidence as well as some stylized facts about UIRs. In particular, we started
from the evolutionary process of innovation and technological change as
originally expressed by Nelson and Winter (1982). These theories greatly
help to set up a more realistic view of agents (bounded) rationality (Simon
1958) and of their satisfycing behavior (for an extensive overview on theor-
etical approaches to tackle learning in an evolutionary environment, see Dosi
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et al. [2005]). Our modeling effort also benefited from the large literature
about the nature of innovation processes involving science and technology
interactions; namely, from the dichotomy between the linear and the
so-called chain-linked models of innovation (Kline and Rosenberg 1986).
We also refer to theories of innovation networks (e.g., Buchmann and Pyka
2011), which are now largely accepted as a crucial source of innovation dri-
ven by interactions between specialized agents and the underling knowledge
exchange (see, for instance, Gilbert et al. 2001). Finally, we also built on the-
ories on the relation between cognitive distance and innovation outputs
(Nooteboom 1992, 1999) or the relations between research orientation and
innovation output to set up the equations that transform innovation hypoth-
eses into research outcomes.

A crucial step in the double-loop learning process is the interaction
between theories and evidence. We matched theories with some facts and
figures about UIRs in the biopharmaceutical industry. For instance, we cali-
brated the functional relations between the kene-related variable (project’s
research direction, cognitive distance, and experience level) and the type
of research outcome as well as the parameters of our model by running sev-
eral test simulations and comparing their results with empirical data about
the percentages of A=B=C drugs in the United States from the U.S. Food
and Drug Administration. Then we picked up those parameters and we
refined the equations in such a way that made the results reasonably similar
to real-world data. Our model in its present stage does not claim to repro-
duce the developments in the biopharmaceutical industries in a history-
friendly way (Malerba et al. 1999). Instead, we focus on important stylized
facts and elaborate the complex interaction patterns among the various
actors. In this sense, our modeling approach claims to be empirically guided.
For an extensive overview on the relationship between ABM and empirical
evidence, see Fagiolo et al. (2007). Finally, the robustness of our parameters
has been tested through traditional sensitivity analysis. Surprising findings,
compared to the initial expectation of the modeler, can emerge. This eventu-
ally leads to an interpretation of the results that really provides new insights
and viewpoints. In our model, this is the case, for instance, for the lack of
experience of many universities in dealing with a too radically different
research orientation compared to their traditional one. Moreover, additional
research questions came out of the double-loop learning-by-modeling mech-
anism. During the modeling process, we realized that there are some impor-
tant elements that can affect the long-run innovativeness of the research
system in the UIRs framework that were not initially considered and are
not fully explained in the literature. These elements include (1) how changes
in the budget allocation policies of the NRA (for instance, toward a stronger
selectivity of the funding recipients) influence universities’ behaviors with
respect to interactions with industry and how this affects the patterns of inter-
action between the agents; and (2) how changes in the agents’ investment
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strategies due to, for instance, external shocks affect the innovativeness of
the research system through the emergence of different UIRs patterns.

A common objection to this methodology is that results still depend on
assumptions. In our case what we say is that if we assume bounded rational
agents and such particular relations between research orientation and inno-
vative outputs and between cognitive distance and innovative outputs, then
university–industry relationships lead to the knowledge dynamics that we
have highlighted. We agree with Edmonds and Bryson (2004) when they
urged to ‘‘seek scientific foundations for agent systems.’’ Indeed, concerning
our work, it is crucial to notice that the above-mentioned assumptions have
not ‘‘fallen from the sky’’ but are a result of a sort of inductive process driven
by the interaction among theoretical elements, stylized facts, and learning-
by-modeling. The value-added of the double-loop learning mechanism in
our particular case is that, on the one hand, analyzing the effects of UIRs
on the long-run innovativeness of the research system considering only bilat-
eral interactions between the agents would have neglected the cumulative
effects of multidirectional inter agent interactions. On the other hand, the the-
ories explaining these effects have also been critically revised during the
modeling process, and alternative explanations of the interactions between
the different elements emerged. Thus, the ABM methodology can substan-
tially contribute to a better understanding of complex socioeconomic interac-
tions and thus support the development of theories that are suited to dealing
with this complexity without ignoring it.
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APPENDIX

TABLE A1 Initial Distribution of Agent’s Kene Elements

Agents

Kene
quadruple’s
element Distribution

UNIs RD 70% of UNIs’kene quadruples have a research direction randomly
distributed within the range 1–3

30% of UNIs’kene quadruples have a research direction randomly
distributed within the range 2–7

C 80% of UNIs’kene quadruples are distributed around 3–5 capabilities’
focal points;the rest arerandomly spread

DBFs RD 10% of DBFs’kene quadruples have a research direction randomly
distributed within the range 1–4

80% of DBFs’kene quadruples have a research direction randomly
distributed within the range 3–6

10% of DBFs’kene quadruples have a research direction randomly
distributed within the range 5–9

C 90% of DBFs’kene quadruples are randomly distributed within the range
of capabilities from 1 to 60; 80% of this 90% is distributed around
a� 5% range of the first capability

10% of DBFs’kene quadruples are randomly distributed over the whole
range of capabilities (1–100)

LDFs RD 20% of LDFs’kene quadruples have a research direction randomly
distributed within the range 1–9

10% of LDFs’kene quadruples have a research direction randomly
distributed within the range 2–4

70% of LDFs’kene quadruples have a research direction randomly
distributed within the range 5–9

C 60% of LDFs’kene quadruples are distributed within the range of
capabilities from 61 to 100 with focal points with group 3–5 kene
elements

40% of LDFs’ kene quadruples are distributed over the whole range of
capabilities (1–100) with focal points with group 3–5 kene elements
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