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Abstract promising alternative: on the one hand, it builg®m

theories and empirical evidence, on the other hiand
integrates them, suggesting different and more
comprehensive ways to look at complex phenomena,
thus providing the potential to explain results @i
otherwise might look contradictory. Modelling
experience can be viewed as a learning procesi: itse
it is an adaptive struggle in a world full of corapity.
In this struggle we often become aware of howdittl
we know about the actual problem under investigatio
The aim of this paper is to discuss how ABM
. methodology can contribute, through learning-by-
1 Introduction modelling process to increase our understanding of
In what is increasingly thought as a “knowledgecomplex phenomena. We will make use of a model of
society” continuous learning is supposed to be &Jniversity-Industry Relationships (UIRs) in the bio
fundamental requirement upon which knowledge andharmaceutical sectors, which analyzes interactions
economic growth are built. Obviously in a complexand the underlining knowledge dynamics between
world learning is not an easy task. To the contrarjleterogeneous agents involved in research. A aetail
|earning is itself a Comp|ex phenomenon_ In terrha o description of this model and of the simulationules
taxonomy different forms of learning have beencan be found in [Triulzet al., 2009]. For the purpose
identified as so-calletiearning-by-concepts [Malerba, ©f this paper we will use this modelling experiertoe
1992] of which So_ca”edearning_by_doing is most sustain our argumentatlon. Note that many other
prominent. A particular form of learning-by-doing, ABMs can serve the same purpose.
which concerns research activities, can be labeled The paper is organised as follows: We start with a
learning-by-modeling: A problem of interest is conceptualization of modelling as double-loop leagn
described in an abstract form in an equation systerdrocesses (section 2); a brief description of UsRsan
and the static as well as dynamic features of thedgh example of a complex phenomenon characterized by
are analyzed. The gained insights are applied tgnclear empirical evidence will be presented (secti
generate a better understanding of the underlying-1). From this we claim the necessity of a more
problem. complex-friendly way of analysis: ABM (section 3.2).
Choosing an adequate mathematical representatidi 3.3 we describe the Agent-Based-UIRs model and
as well as an adequate degree of complexity reoucti section 3.3 introduces to the main findings. Finall
to trace the model analytically is everything but a collection of insights from the modelling experienis
easy task. For instance researchers in economiesgfa Summarized (Section 4). We conclude that the Agent-
severe trade-off between the complexity of theBased-UIRs model can be viewed as an example of a
problem under investigation, which is characteribgd double-loop learning process.
multi-agent dynamics and often self-reinforcing .
processes and the scope of an analytical framework Modeling as a double-loop
which at best can give a detailed partial pictufeao learning process

multifaceted reality. In such a contexts, Agent-&8&s ApmMms can be thought as a laboratory for theory
Models (ABMs), are increasingly considered as &mprovement. Deichsel and Pyka [2009] and Brenner
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and Werker [2007] argue, that abductivereward system for academic researchers, introduaing
methodologies, which consist in starting with stundy personal and institutional incentive to do more lsgup

the facts, devising simple assumptions and thengyoi research. The possibilities to increase industndfng
back and forth between assumptions and theistemming from the commercialization of academic
implications, are perfectly suited for a refinemenf research potentially push universities away frora th
theory. ABMs contribute to improve the understamgdin pure basic in favour of a more applied research, in
of complex phenomenon because the modelingrder to increase the probability to end up with
experience is itself a learning process. More m&lgi  patentable research outcomes. The consequences migh
modeling is intrinsically a double-loop learning be harmful for the system because it generates a
process. Indeed, as argued by Argyris and Schdsituation in which less scientists and less academi
[1996], two types of learning can be distinguished:institutions are engaged in basic research, which i
single and double loop learning. The differencefundamental component of the whole system and
concerns the refinement of the theories and theecessary to generate continuously innovations.
assumptions upon which learning is grounded. The On the other hand, many studies [e.g. D’Este et al.
former is based on a mechanism of control an®005], show that access to additional financial
correction. When the outcome of an action diffesf  resources and to industry skills are reasons for
its expected result, a process of search and darec university researchers to interact with industrpnte

of the causes of the mismatch begins. This protess authors [e.g. Breschi et al.,, 2007] postulate the
based on feedbacks that are analyzed using the bagxistence of a resource effect: interactions with
knowledge of the actor which, in single loop leaqi industry, providing larger cognitive and financial
is an instrument of the analysis but is not its#lé resources, increase the productivity of academic
object of learning. Contrariwise, double-loop leéagh scholars and university institutions in terms of
does not consider basic knowledge as a dictum. élen@ublishing and patenting, thus increasing their
it includes all kinds of involved knowledge. Double visibility and reputation. A self-reinforcing virbws
loop learning is suited for the investigation ofmq@ex  circle is generated which boosts research proditgtiv
phenomena because basic knowledge improvementsThis contradictory evidence even worsens because
are foreseen. Without doubt, this is the case foonly a few empirical studies also consider the eyst
modelling experiences. Theoretical elements must behich surrounds these interactions. The role ofepth
included in ABMs as well as a general awareness ddctors, like government, is largely neglected. Sthe

the stylised facts related to the research objecthe  bi-directionality of the knowledge and technology
modelling process all these elements are subject twansfer between universities and industry. Even if
validations which ultimately contribute to advarmér  there are several studies focusing on the nature of

knowledge on the issue. public research funding, this issue has been censdd
in isolation. Studies have produced inconsistent
3 An example: an ABM of evidence: some highlight complementarities between

. . . . public and private R&D while others claim a
University-Industry Relationships substitutive  relationship (for a comprehensive
We choose as an example for modeling experience oliterature survey, see David et al., 2000).
model of UIRs in the bio-pharmaceuticals sectors. AUIRs are clearly a complex phenomenon. Therefore,
brief description of the model (section 3.3) and it these relationships call for a more comprehensive
context (sections 3.1 and 3.2) help to make théeea analysis which attempts to integrate the various
familiar with it and to better understand thedimensions and extend our current knowledge.
peculiarities of the double-loofearning-by-modeling

process. 3.2 In praise of ABMs
) The lack of a generally accepted evaluation of UIRs
3.1 A complex phenomenon: _ can be traced back to two shortcomings: (i) the
University-Industry Relationships complexity of these relationships makes it diffictd

The way innovation is pursued in life sciencesanalyse their multiple correlated effects. Howeves
industries is strongly influenced by the adventtiné  efforts to consider the role of all the actors whare
biotechnology paradigm and the spreading ofnhgaged in the bio-pharmaceuticals’ innovation
university patenting. In this industry UIRs have systems and to analyse how these relationshipstaffe
emerged as a major platform for knowledge exchangeach other (i.e. universities, industry and govegnts)
and innovation. Despite their dramatic expansiod anis worth to be made. To focus only on a selectexigr
the growing awareness in the economic and medica$ misleading. (ii) Traditional scientific tools v only
literature, there is only inconsistent and incorple limited possibilities to disentangle the underlying
evidence with respect to the long-run effects oa thcomplexity. Qualitative (interviews etc.) as wels a
innovativeness of the research system. quantitative analysis (econometric models etc.) are
On the one hand, many authors [e.g. Angell, 2004¢xtensively applied to study UIRs. They are extrgme
suggest that UIRs can potentially damage the lamg r useful to understand specific aspects of UIRs and t
innovativeness of the research system in life s@en gain insights into the complex relations. But thely
Following this literature, UIRs have modified the Miss a key issue, namely the interaction spherérdpa



with knowledge flows between different actors. Henc actors, and to test the effects of agents’ intéoaston
we are in one of the frequent cases in which the¢heir knowledge base and, ultimately, on the
complex nature of the phenomenon under investigatioinnovativeness of the research system with the bé&lp
leads to unclear empirical evidence. How to shgltli simulation experiments.
on this ambiguity?

We claim that UIRs are driven by the need to acces3.3.1 Types of agents
and exchange specialized and generic knowledge. InNThe model's population is composed of universities
splence-based .and knowledge-intensive sector, likeuNls), large diversified firms (LDFs) and dedicdte
bio-pharmaceuticals, actors are heterogeneoushyiotech firms (DBFs). There are two further actaas,
specialized in a relatively narrow knowledge spaceNational Research Agency (NRA) and venture
TI_1|s is true for flrms as well as for unl\_/er5|t|(=1hough capitalists (VCs). These latter agents are funding
slightly less strict). The cumulative nature of actors (of universities and biotech firms respesiy
knowledge in these fields leads to the creatioseadf-  which are not actively engaged in research.
reinforcing mechanism between the accumulation ojgents differ according to their knowledge basee Th
knowledge and expertises and the generation Ghodel's representation of the knowledge base of
successful innovations. These mechanisms are d’eatggents draw on the concept of ‘kene’ developed by
as a ‘nuisance’ causing  simultaneity  orGilbert [1997] and applied in previous simulatiook
heteroscedasticity problems. Obviously, when it eem knowledge dynamics in innovation networks. The
to the empirical analysis Of. evolutlongry processeknowledge base of each agent, ke, consists of a
based on knowledge dynamics, a major problem agector containing different ‘units of knowledge’liza
expressed by Keith Smith emerges: “Neither learninguadruples. Each quadruple includes: a research
nor the capabilites which result, seem to bedirection (RD) which allows to differentiate betwee
measurable in any direct way” [2005, p.151]. Asyniversities (mainly engaged in basic research) and
shown by several models belonging to the SKINfirms (mainly engaged in applied research), a
family [among others Gilbert et al., 2001] knowledg capability (C) which stands for the particular
dynamics can be effectively analysed through multitechnological discipline in which actors are enghge
agent simulations based on interactions betwee(pharmaceutical or biotechnology), an ability (A)
heterogeneous and bounded rational agents. Theggich reveals the actor's specialization in his/her
models show that knowledge dynamics have to beapability field and an expertise (E) which shows f

placed central because they are the origin of ajenthow long an agent has been active in a certaititgbil
success/failure on a micro-level and key to underst

causes and consequences of aggregate phenomenor8aB.2 Decision mechanisms
the macro-level. We argue that ABMs main strength i Agents have to take two important decisions: (Byth

to allow a more comprehensive view on knowledgg,,ye to allocate their funds between the different

ij'?ag“cs fWhiCh ?”0‘3’.5_ folr’ iml?oftarl‘t ;iditional research-related activities: own research projects
insights. Of course ‘traditional’” analytical tocdse not 50t research projects (for all the agents), lsieq,

discarded. On the contrary, they provide stylizad$, g,ons0ring and clinical trials (only for LDFs). Bhi
and contribute to theory formation. A!SMS build on cpoice follows a satisfycing behaviour. (ii) If the
them and allow going one step further: they intédra yecige to allocate part of their resources to joint
traditional analyses and provide the prerequisft®s | ocearch projects, they have to choose one or more

substantial theory improvement. partners according to two partnerships strategees:
3.3 The model conservative strategy which aims to find as similar

_ agents as possible, and a progressive strategychwhi
Our model reproduces R&D and knowledge dynamicgims to find as different partners as possible.

in the bio-pharmaceutical sector, with a particular . . .

focus on the role of UIRs. We refer to a model of3-3-3 Environment and interactions
innovation networks originally developed by Gilbert The model's environment plays an important role:
Pyka and Ahrweiler [e.g. 2001]. This model is futh agents are aware of competition as well as the
refined in subsequent works in which it has beerpossibility to cooperate. Firms screen their
applied to study a variety of issues related toenvironment when they decide on their allocation
knowledge dynamics, learning and collaborationstrategy. Periodically firms compare their allooati
between agents. We extend the original model tatrategy with the average allocation per activifythe
reproduce the research environment of biomost successful firms, i.e those in the first gilerof
pharmaceutical industries, explicitly taking into firms ranking, belonging to the same sector. Ifiranf
account different classes of agents moved by déversis successful it does not change its allocatioatsgy.
aims and rewards (universities, biotech andrirms that are not successful change their strategy
pharmaceutical firms), multiple channels of imitating successful firms.

interactions (research collaborations, licensingd anAs in Gilbert et al. [2001] the process of own and
sponsored research) and different research output®llaborative research is based on the combinadfon
(three classes of patents and drugs). The goahef t selected elements of an agent’s knowledge basehwhic
model is to analyze knowledge dynamics between thforms a so-called innovation hypothesis (IH). het



case of joint research the project knowledge basa i universities and DBFs (standard scenario) universit
combination of parts of the knowledge bases of thgatenting is more innovative (larger percentagedof
involved agents. Some quadruples of the agentsé&en class patents) than in the case in which these
are randomly recombined to form a project innovatio interactions were not permitted (no_DBFs scenario).
hypothesis. If the project is successful, the acteith  This finding shows that universities do not enjoy
an absorptive capacity above a critical thresholdtognitive resource effects related to interactioithw
acquire the knowledge of the joint innovationindustry. We also tested the hypothesis of a firenc
hypothesis which has been contributed by the ptojeadesource effect generated by licensing revenuems fro
partner(s), though with a reduced experience level. LDFs. The results in terms of the relative numbér o
) : A-class patents have not proved to be statistically

3.3.4 Model’s dynamics significant. However we found that interactions twit
Each simulation run consists of several iteratidres, | DFs increase the total number of university patent
cycles of research. A cycle starts, when actoros@o put without influencing their innovation value.
to start a joint, an own research project or baththe We also tested the effects of interactions with
former case, actors look for partners and subsetuen universities on DBFs innovative capabilities. The
jointly run the project (and share the project epstn  percentage of innovative patents (A-class) outhef t
the latter case, the actors set up and run theegr@)  total number of DBFs patents is on the verticakaof
isolation. The project lasts several periods amélfy  the lower left graph in Figure 1. The two lines
is evaluated. If the project is successful a patent represent the values of this percentage in tweeckfit
granted. There are three kinds of possible outcames simulations: the standard scenario and a scenario i
the model (ranked from the least to the mosiyhich universities were excluded from the populatio
innovative): (1) C-class patent, (2) B-class pat@md (DBFs could not interact with them). The differerine
(3) A-class patent. Which outcome is generatedhe trends shows that DBFs greatly benefit from
depends on the research direction of the actobm¢&  knowledge exchange with universities. This shovat th
research direction increase the likelihood to gEan despite the missing Cognitive resource effects fom t
class patent) and on the variance of the involvediniversities side, this effect is visible for thedustry
capabilities (the higher the variance, the highee t partners. In other words, biotech firms benefit enor
outcome’s value). The probability of success whigh than universities from the knowledge exchange
positively related to the agent’s experience levsl, petween each other.
higher for an applied research direction and negéi Finally our simulation experiments show that
depends on the variance of the capabilities inalve  governments can effectively reduce the harmful affe

If the patent is granted to an university or a DBF of UIRs on the universities research direction. g
the patent holder enters the market for researdht@n incentives for basic research can be restored tfireu
to find a LDF willing to acquire a license. If tipatent  |arger basic research public funding budget. Tlsis i
is originally granted to a LDF, the firm can dirgct shown in the lower right graphs in Figure 1. On the
conduct clinical trials and try to develop a newgito vertical axis we find the average research directé
earn revenues. Eventually the actors re-invest thgnjversities. The different lines represent differe
money that they have gained at the end of the reBea scenarios in which the basic research public budget
cycle in new research projects and a new cyclensegi progressively increased (MAX_NRA_rd3/4/5). The
3.3.5 Results graph shows that a larger government basic research

. . ) funding prevents the shift of university research
Several Monte Carlo simulation experiments based Ofientation from basic to applied research.

a standard and some alternative scenarios are
performed. Results of different scenarios are coegha 4
tested for statistical significance. Results arevah in .
Figurel. The upper left graph shows the dynamics of experience

the average research orientation of universitiesi®  The application of the Agent-based simulation
simulations: a standard scenario in which univesit methodology generates new insights on the complex
are allowed to interact with industry (both DBFsdan phenomenon of University-Industry Relationships.
LDFs), and a second one in which universities were Qur experiments reject the hypothesis of a positive
the only agents in the population. One immediatelynfluence of a cognitive resource effect on uniitgrs
sees that in the Iat'ter case universities main®in jnnovative patents productivity and partially reddc
strong focus on basic research (lower values of thghe influence of the financial resource effect.

average research direction). This shows that Nevertheless, knowledge exchange processes are
relationships with industry do increase incentifes  still a crucial characteristic of UIRs. Intensive
universities to engage in applied research. interactions between universities and DBFs do not
The upper right graph shows the results for thé ®&s produce an increase in universities’ innovative
the so-called ‘resource effect hypothesis’. On theapabilities. Instead, they reduce the total numdfer
vertical axis we find the percentage of innovativepatents coming from academic research. This,
patents (A-class) generated by universities redattv  however, does not mean that there are no benedits f
total university patenting. Again two experiment® a these interactions. Through joint research projeats
performed. In the case of interactions betweemrxchange of knowledge between universities and

Insights from the modeling



A 12,00%
e T . i
- 10,00% L RS L
r— i O RN VAREE R AT i
. ca 8,00% R R L WL "-‘u"f.“ ! i
7 ’ o ) ALV ST AL L
3,5 d
/ 6,00%
Ve
3,4
33 — -==-=Standard scenario
— -Standard Scenario RD kenes 2 00%
v R L e e Whitout DBFs
«wee Only_UNIs RD Kene 0,00% S S -
1 4 7 10 13 16 19 22 25 28 31 24 37 40 43 45 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 B B B B B e I e A == i =
8,00% o e
3,720 — :
7,00% . -
gt 3,670 ————————— ==
£,00% T S e
e 3,620 T L b
5,00% rarent T o s B8 it
‘v" T 5‘570 .::4. — -_— - - )
4,00% i ettt . Y
o /.r e 3,520 ,:," £
3,00% 'I ._.-‘.' 3,470 "”- e evswgg e s,
2 00% ! w MAX_NRA_rd3
£l T ) 3,420 | “NRA rd
- ) o ----Standard scenario ; = —=MAX_NRA_rd4
1,00% ith 3,370 -===MAX_NRA_rd5
0,00% S s Lo _ —- Stand. Scenario
R B B B R S TR NRNANEESIRREEERRELERR
Figure 1

biotech firms occurs. This newly acquired capaigiit which further enlarge the market failure, espegiatl
and abilities expand the university knowledge basethe long run. Accordingly, government research
thereby increasing its heterogeneity, but this @ n policies should be oriented to raise the publicaesh
sufficient for a larger patent productivity of funding budget with the aim to ensure that an adégju
universities. Many universities might not have theamount of fundamental research is undertaken.

right skills to deal with applied research, namehgy )

might not be experienced to deal with a knowledgé Conclusions

that is far from their traditional research oriefua. Innovation takes place in extremely complex systems
Our findings also show that when a complexyhich are characterized by heterogeneous actorgij- mu
phenomenon like UIRs involving heterogeneous actorgimensional interactions and multiple knowledgewio
is analyzed, one has to consider all of its mutdtted The increasing complexity creates new challenges fo
aspects. In particular, our results show that UlRSse  gcholars and can be disentangled only by the iatiegr
a significant increase in the innovative potentidl of several methodologies.
biotech firms. This is due to a threefold effeciy ( e argue that ABM can play a key role in this respe
interactions  with  universities expand DBFs’ |, particular  double-loop  learning-by-modeling
knowledge bases, allowing biotech firms to absorlypalenges what we think to know about the objéthe
new kene elements focusing on fundamental researcgna|ysis_ An example of this double-loop learning
(i) UIRs increase the variance in their capak@itand, process, focused on UIRs has been provided. Asedrgu
(iii) they have a positive effect on DBFs’ netwamgi  py Argyris and Schon [1996], double loop learnitayts
experience. Therefore our results highlight thefrom theory and refines it through a verificationda
importance of UIRs concerning technology andygjidation cycle in which the theory itself is cked and
knowledge flows. These finding suggest that, besidejnproved. In a similar vein, Deichsel and Pyka [200
universities, new scientific knowledge is incre@#n  recommended that modelers should start with redspna
generated by biotech firms. _ . simple assumption based on theoretical elements and
~ Finally our results show that even if public andstylized facts and hence entering the process ofggo
industry research funding are considered to sulistit pack and forth between assumptions and implicatitms
each other, in bio-pharmaceuticals they arghe case of the model presented above we use tas ini
complementary. According to our results governmeninpyts of the modeling process a combination obties
basic research grants are important to counterbalan ang insights gained from empirical evidences ad ae!
the different aims and incentives provided by intdys  stylized facts about UIRs. This theories greatliphe set



up a more realistic view of agents (bounded) ratiity) 2007.
and of their satisfycing behavior. Our modelingoeff [David et al., 2000] Paul A. David, Bronwyn

benefits from the large literature on the nature of 1 a1l Andrew A. Toole. Is Public R&D a
innovation processes involving science and techgylo Comple’ment or Substitute for Private R&D?
interactions. We also started from theories of iatimn Review of the Econometric Evidence.

networks which are now largely a}ccepteq as a ducia peosearch Policy, Volume 29, pages 497-
source of innovation driven by interactions between 5,9 5000

specialized agents and the underling knowledge ™’ ' , )
exchange. Finally we build on theories on the r@tat [D’Este et al, 2005] Pablo D’Este, Lionel
between cognitive distance and innovation outputs Nesta, Parimal Patel. Analysis of University-
[Nooteboom, 1992 and 1999] or the relations between Industry research collaborations in the UK:
research orientation and innovation output to pesame preliminary results of a survey of university

starting formulas.
Obviously we match theories with some facts andrég

resesarchers, SPRU Report, May 2005.
[Deichsel and Pyka, 2009] Simon Deichsel

about UIRs in the bio-pharmaceutical industry. For and Andreas Pyka. A Pragmatic Reading of

instance, we calibrate the functional relationshvadl as

Friedman's Methodological Essay and What

the parameters of our model by running several test It Tells Us for the Discussion of ABMs,
simulations and compare results with empirical data Journal of Artificial Societies and Social
about the percentages of A/B/C drugs in US. Then we Simulation, Volume 12(4), 2009.

pick up those parameters and refine the formulasvimy
that the results are reasonably similar to realldvdata.
Finally the robustness of our parameters is tebiec
sensitivity analysis. This way one can still haweme
surprising findings compared to the initial expéota of
the modeler. This eventually leads to interpretatbthe
results that really provides new insights and vieints.
In our model this has been the case for the unreqee
of many universities to deal with a too radicalfefiént
research orientation compared to their ancestral @f
course, results depend on assumptions. Practiedibt

[Gilbert et al, 2001] Gilbert, Nigel, Pyka,
Andreas and Petra Ahrweiler (2001),
Innovation Networks - A Simulation

Approach, Journal of Artificial Societies
and Social Simulation, Vol. 4, Issue 3.

[Malerba, 1992] Franco Malerba. Learning
by firms and incremental technical change,
The Economic Journal, Volume 102, 845-
859.

[Nooteboom, 1992] Bart  Nooteboom.

we say is thaif we assume bounded rational agents and Towards a Dynamic Theory of Transactions,

the relations between research orientation andviine

outputs and between cognitive distance and innewati

outputs, then university-industry relationshipsdi¢a the

knowledge dynamics that we have highlighted. Howeve

it is crucial to notice that these assumptions hawe
“fallen from the sky” but are results of a sortinfluctive

process driven by the interaction among theoretical[Smith,

elements, stylized facts and learning by modeling.

References

[Angell, 2004] Marcia Angell. The truth about
Pharmaceutical Companies: How They
Deceive Us and What to Do About It.
Random House, New York, 2004.

[Argyris and Schoén, 1996] Chris Argyris and
Donald A. Schon. Organizational Learning:
a theory of action perspective, Addison-
Wesley, Reading, MA.

[Brenner and Werker, 2007] Thomas Brenner
and Claudia Werker. A Taxonomy of

Inference in Simulation Models,
Computational Economics, Volume 30,
pages 227-244.

[Breschi et al, 2007] Stefano Breschi,

Stefano Lissoni, Fabio Montobbio. The
Scientific Productivity of Academic
Inventors: New Evidence from Italian Data,
Economics of Innovation and  New
Technology, Volume 16 (2), pages 101-118,

Journal of Evolutionary Economics, Volume
2, pp. 281-299, 1992.

[Nooteboom, 1999] Bart Nooteboom. Inter-
Firm Alliances: Analysis and Design,
London: Routledge, 1999.

2005] Keith Smith. Measuring
Innovation. In Jan Fagerberg, David C.
Mowery, Richard R. Nelson editor, Oxford
Handbook of Innovation, pages 148-177,
2005. Oxford University Press.

[Triulzi et al., 1992] Giorgio Triulzi, Ramon
Scholz and Andreas Pyka. R&D and
Knowledge Dynamics in University-Industry
Relationships in Biotech and
Pharmaceuticals: An Agent-Based Model,
20009.



