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Abstract       
Learning is central in so-called knowledge 
societies. In order to cope with the complexity 
of socio-economic phenomena new forms of 
learning are necessary. We argue that 
learning-by-modeling is contributing to our 
knowledge of complex phenomena. The idea 
of learning-by-modeling is introduced by 
applying an Agent-based model of University-
Industry Relationships.  

1 Introduction 
In what is increasingly thought as a “knowledge 

society” continuous learning is supposed to be a 
fundamental requirement upon which knowledge and 
economic growth are built. Obviously in a complex 
world learning is not an easy task. To the contrary 
learning is itself a complex phenomenon. In terms of a 
taxonomy different forms of learning have been 
identified as so-called learning-by-concepts [Malerba, 
1992] of which so-called learning-by-doing is most 
prominent. A particular form of learning-by-doing, 
which concerns research activities, can be labeled 
learning-by-modeling: A problem of interest is 
described in an abstract form in an equation system 
and the static as well as dynamic features of the model 
are analyzed. The gained insights are applied to 
generate a better understanding of the underlying 
problem.  

Choosing an adequate mathematical representation 
as well as an adequate degree of complexity reduction  
to trace the model analytically is everything but an 
easy task. For instance researchers in economics face a 
severe trade-off between the complexity of the 
problem under investigation, which is characterized by 
multi-agent dynamics and often self-reinforcing 
processes and the scope of an analytical framework 
which at best can give a detailed partial picture of a 
multifaceted reality. In such a contexts, Agent-Based 
Models (ABMs), are increasingly considered as a 

promising alternative: on the one hand, it builds upon 
theories and empirical evidence, on the other hand it 
integrates them, suggesting different and more 
comprehensive ways to look at complex phenomena, 
thus providing the potential to explain results which 
otherwise might look contradictory. Modelling 
experience can be viewed as a learning process itself: 
it is an adaptive struggle in a world full of complexity. 
In this struggle we often become aware of how little 
we know about the actual problem under investigation. 

The aim of this paper is to discuss how ABM 
methodology can contribute, through a learning-by- 
modelling process to increase our understanding of 
complex phenomena. We will make use of a model of 
University-Industry Relationships (UIRs) in the bio-
pharmaceutical sectors, which analyzes interactions 
and the underlining knowledge dynamics between 
heterogeneous agents involved in research. A detailed 
description of this model and of the simulation results 
can be found in [Triulzi et al., 2009]. For the purpose 
of this paper we will use this modelling experience to 
sustain our argumentation. Note that many other 
ABMs can serve the same purpose.  

The paper is organised as follows: We start with a 
conceptualization of modelling as double-loop learning 
processes (section 2); a brief description of UIRs as an 
example of a complex phenomenon characterized by 
unclear empirical evidence will be presented (section 
3.1). From this we claim the necessity of a more 
complex-friendly way of analysis: ABM (section 3.2). 
In 3.3 we describe the Agent-Based-UIRs model and 
section 3.3 introduces to the main findings. Finally a 
collection of insights from the modelling experience is 
summarized (Section 4). We conclude that the Agent-
Based-UIRs model can be viewed as an example of a 
double-loop learning process. 

2 Modeling as a double-loop 
learning process 

ABMs can be thought as a laboratory for theory 
improvement. Deichsel and Pyka [2009] and Brenner 



and Werker [2007] argue, that abductive 
methodologies, which consist in starting with studying 
the facts, devising simple assumptions and then going 
back and forth between assumptions and their 
implications, are perfectly suited for a refinement  of 
theory. ABMs contribute to improve the understanding 
of complex phenomenon because the modeling 
experience is itself a learning process. More precisely, 
modeling is intrinsically a double-loop learning 
process. Indeed, as argued by Argyris and Schön 
[1996], two types of learning can be distinguished: 
single and double loop learning. The difference 
concerns the refinement of the theories and the 
assumptions upon which learning is grounded. The 
former is based on a mechanism of control and 
correction. When the outcome of an action differs from 
its expected result, a process of search and correction 
of the causes of the mismatch begins. This process is 
based on feedbacks that are analyzed using the basic 
knowledge of the actor which, in single loop learning, 
is an instrument of the analysis but is not itself the 
object of learning. Contrariwise, double-loop learning 
does not consider basic knowledge as a dictum. Hence 
it includes all kinds of involved knowledge. Double 
loop learning is suited for the investigation of complex 
phenomena because basic knowledge improvements 
are foreseen. Without doubt, this is the case for 
modelling experiences. Theoretical elements must be 
included in ABMs as well as a general awareness of 
the stylised facts related to the research object. In the 
modelling process all these elements are subject to 
validations which ultimately contribute to advance our 
knowledge on the issue.  

3 An example: an ABM of 
University-Industry Relationships 

We choose as an example for modeling experience our 
model of UIRs in the bio-pharmaceuticals sectors. A 
brief description of the model (section 3.3) and its 
context (sections 3.1 and 3.2) help to make the reader 
familiar with it and to better understand the 
peculiarities of the double-loop learning-by-modeling 
process. 

3.1  A complex phenomenon: 
University- Industry Relationships 

The way innovation is pursued in life sciences 
industries is strongly influenced by the advent of the 
biotechnology paradigm and the spreading of 
university patenting. In this industry UIRs have 
emerged as a major platform for knowledge exchange 
and innovation. Despite their dramatic expansion and 
the growing awareness in the economic and medical 
literature, there is only inconsistent and incomplete 
evidence with respect to the long-run effects on the 
innovativeness of the research system.  

On the one hand, many authors [e.g. Angell, 2004] 
suggest that UIRs can potentially damage the long run 
innovativeness of the research system in life sciences. 
Following this literature, UIRs have modified the 

reward system for academic researchers, introducing a 
personal and institutional incentive to do more applied 
research. The possibilities to increase industry funding 
stemming from the commercialization of academic 
research potentially push universities away from the 
pure basic in favour of a more applied research, in 
order to increase the probability to end up with 
patentable research outcomes. The consequences might 
be harmful for the system because it generates a 
situation in which less scientists and less academic 
institutions are engaged in basic research, which is a 
fundamental component of the whole system and 
necessary to generate continuously innovations.  

On the other hand, many studies [e.g. D’Este et al., 
2005], show that access to additional financial 
resources and to industry skills are reasons for 
university researchers to interact with industry. Some 
authors [e.g. Breschi et al., 2007] postulate the 
existence of a resource effect: interactions with 
industry, providing larger cognitive and financial 
resources, increase the productivity of academic 
scholars and university institutions in terms of 
publishing and patenting, thus increasing their 
visibility and reputation. A self-reinforcing virtuous 
circle is generated which boosts research productivity. 

This contradictory evidence even worsens because 
only a few empirical studies also consider the system 
which surrounds these interactions. The role of other 
actors, like government, is largely neglected. So is the 
bi-directionality of the knowledge and technology 
transfer between universities and industry. Even if 
there are several studies focusing on the nature of 
public research funding, this issue has been considered 
in isolation. Studies have produced inconsistent 
evidence: some highlight complementarities between 
public and private R&D while others claim a 
substitutive relationship (for a comprehensive 
literature survey, see David et al., 2000).    
UIRs are clearly a complex phenomenon. Therefore, 
these relationships call for a more comprehensive 
analysis which attempts to integrate the various 
dimensions and extend our current knowledge.  

3.2  In praise of  ABMs 
The lack of a generally accepted evaluation of UIRs 
can be traced back to two shortcomings: (i) the 
complexity of these relationships makes it difficult to 
analyse their multiple correlated effects. However, the 
efforts to consider the role of all the actors which are 
engaged in the bio-pharmaceuticals’ innovation 
systems and to analyse how these relationships affect 
each other (i.e. universities, industry and governments) 
is worth to be made. To focus only on a selected group 
is misleading. (ii) Traditional scientific tools have only 
limited possibilities to disentangle the underlying 
complexity. Qualitative (interviews etc.) as well as 
quantitative analysis (econometric models etc.) are 
extensively applied to study UIRs. They are extremely 
useful to understand specific aspects of UIRs and to 
gain insights into the complex relations. But they all 
miss a key issue, namely the interaction sphere dealing 



with knowledge flows between different actors. Hence, 
we are in one of the frequent cases in which the 
complex nature of the phenomenon under investigation 
leads to unclear empirical evidence. How to shed light 
on this ambiguity?  

We claim that UIRs are driven by the need to access 
and exchange specialized and generic knowledge. In a 
science-based and knowledge-intensive sector, like 
bio-pharmaceuticals, actors are heterogeneously 
specialized in a relatively narrow knowledge space. 
This is true for firms as well as for universities (though 
slightly less strict). The cumulative nature of 
knowledge in these fields leads to the creation of self-
reinforcing mechanism between the accumulation of 
knowledge and expertises and the generation of 
successful innovations. These mechanisms are treated 
as a ‘nuisance’ causing simultaneity or 
heteroscedasticity problems. Obviously, when it comes 
to the empirical analysis of evolutionary processes 
based on knowledge dynamics, a major problem as 
expressed by Keith Smith emerges: “Neither learning 
nor the capabilities which result, seem to be 
measurable in any direct way” [2005, p.151]. As 
shown by several models belonging to the SKIN 
family [among others Gilbert et al., 2001] knowledge 
dynamics can be effectively analysed through multi-
agent simulations based on interactions between 
heterogeneous and bounded rational agents. These 
models show that knowledge dynamics have to be 
placed central because they are the origin of agents’ 
success/failure on a micro-level and key to understand 
causes and consequences of aggregate phenomenon at 
the macro-level. We argue that ABMs main strength is 
to allow a more comprehensive view on knowledge 
dynamics which allows for important additional 
insights. Of course ‘traditional’ analytical tools are not 
discarded. On the contrary, they provide stylized facts, 
and contribute to theory formation. ABMs build on 
them and allow going one step further: they integrate 
traditional analyses and provide the prerequisites for 
substantial theory improvement. 

3.3 The model 
Our model reproduces R&D and knowledge dynamics 
in the bio-pharmaceutical sector, with a particular 
focus on the role of UIRs. We refer to a model of 
innovation networks originally developed by Gilbert, 
Pyka and Ahrweiler [e.g. 2001]. This model is further 
refined in subsequent works in which it has been 
applied to study a variety of issues related to 
knowledge dynamics, learning and collaboration 
between agents. We extend the original model to 
reproduce the research environment of bio-
pharmaceutical industries, explicitly taking into 
account different classes of agents moved by diverse 
aims and rewards (universities, biotech and 
pharmaceutical firms), multiple channels of 
interactions (research collaborations, licensing and 
sponsored research) and different research outputs 
(three classes of patents and drugs). The goal of the 
model is to analyze knowledge dynamics between the 

actors, and to test the effects of agents’ interactions on 
their knowledge base and, ultimately, on the 
innovativeness of the research system with the help of 
simulation experiments. 

3.3.1 Types of  agents 
The model’s population is composed of universities 
(UNIs), large diversified firms (LDFs) and dedicated 
biotech firms (DBFs). There are two further actors, a 
National Research Agency (NRA) and venture 
capitalists (VCs). These latter agents are funding 
actors (of universities and biotech firms respectively) 
which are not actively engaged in research.  
Agents differ according to their knowledge base. The 
model’s representation of the knowledge base of 
agents draw on the concept of ‘kene’ developed by 
Gilbert [1997] and applied in previous simulations of 
knowledge dynamics in innovation networks. The 
knowledge base of each agent, its kene, consists of a 
vector containing different ‘units of knowledge’ called 
quadruples. Each quadruple includes: a research 
direction (RD) which allows to differentiate between 
universities (mainly engaged in basic research) and 
firms (mainly engaged in applied research), a 
capability (C) which stands for the particular 
technological discipline in which actors are engaged 
(pharmaceutical or biotechnology), an ability (A) 
which reveals the actor’s specialization in his/her 
capability field and an expertise (E) which shows for 
how long an agent has been active in a certain ability. 

3.3.2 Decision mechanisms 
Agents have to take two important decisions: (i) they 
have to allocate their funds between the different 
research-related activities: own research projects and 
joint research projects (for all the agents), licensing, 
sponsoring and clinical trials (only for LDFs). This 
choice follows a satisfycing behaviour. (ii) If they 
decide to allocate part of their resources to joint 
research projects, they have to choose one or more 
partners according to two partnerships strategies: a 
conservative strategy which aims to find as similar 
agents as possible, and a progressive strategy, which 
aims to find as different partners as possible. 

3.3.3 Environment and interact ions 
The model’s environment plays an important role: 
agents are aware of competition as well as the 
possibility to cooperate. Firms screen their 
environment when they decide on their allocation 
strategy. Periodically firms compare their allocation 
strategy with the average allocation per activity of the 
most successful firms, i.e those in the first quartile of 
firms ranking, belonging to the same sector. If a firm 
is successful it does not change its allocation strategy. 
Firms that are not successful change their strategy by 
imitating successful firms. 
As in Gilbert et al. [2001] the process of own and 
collaborative research is based on the combination of 
selected elements of an agent’s knowledge base which 
forms a so-called innovation hypothesis (IH).  In the 



case of joint research the project knowledge base is a 
combination of parts of the knowledge bases of the 
involved agents. Some quadruples of the agents’ kenes 
are randomly recombined to form a project innovation 
hypothesis. If the project is successful, the actors with 
an absorptive capacity above a critical threshold 
acquire the knowledge of the joint innovation 
hypothesis which has been contributed by the project 
partner(s), though with a reduced experience level.  

3.3.4 Model ’s dynamics 
Each simulation run consists of several iterations, i.e. 
cycles of research. A cycle starts, when actors choose 
to start a joint, an own research project or both. In the 
former case, actors look for partners and subsequently 
jointly run the project (and share the project costs). In 
the latter case, the actors set up and run the project in 
isolation. The project lasts several periods and finally 
is evaluated. If the project is successful a patent is 
granted. There are three kinds of possible outcomes in 
the model (ranked from the least to the most 
innovative): (1) C-class patent, (2) B-class patent and 
(3) A-class patent. Which outcome is generated 
depends on the research direction of the actors (a basic 
research direction increase the likelihood to get an A-
class patent) and on the variance of the involved 
capabilities (the higher the variance, the higher the 
outcome’s value). The probability of success which is 
positively related to the agent’s experience level, is 
higher for an applied research direction and negatively 
depends on the variance of the capabilities involved. 
 If the patent is granted to an university or a DBF, 
the patent holder enters the market for research and try 
to find a LDF willing to acquire a license. If the patent 
is originally granted to a LDF, the firm can directly 
conduct clinical trials and try to develop a new drug to 
earn revenues. Eventually the actors re-invest the 
money that they have gained at the end of the research 
cycle in new research projects and a new cycle begins. 

3.3.5 Results 
Several Monte Carlo simulation experiments based on 
a standard and some alternative scenarios are 
performed. Results of different scenarios are compared 
tested for statistical significance. Results are shown in 
Figure1. The upper left graph shows the dynamics of 
the average research orientation of universities for two 
simulations: a standard scenario in which universities 
are allowed to interact with industry (both DBFs and 
LDFs), and a second one in which universities were 
the only agents in the population. One immediately 
sees that in the latter case universities maintain a 
strong focus on basic research (lower values of the 
average research direction). This shows that 
relationships with industry do increase incentives for 
universities to engage in applied research.  
The upper right graph shows the results for the test of 
the so-called ‘resource effect hypothesis’. On the 
vertical axis we find the percentage of innovative 
patents (A-class) generated by universities relative to 
total university patenting. Again two experiments are 
performed. In the case of interactions between 

universities and DBFs (standard scenario) university 
patenting is more innovative (larger percentage of A-
class patents) than in the case in which these 
interactions were not permitted (no_DBFs scenario). 
This finding shows that universities do not enjoy 
cognitive resource effects related to interaction with 
industry. We also tested the hypothesis of a financial 
resource effect generated by licensing revenues from 
LDFs. The results in terms of the relative number of 
A-class patents have not proved to be statistically 
significant. However we found that interactions with 
LDFs increase the total number of university patents 
but without influencing their innovation value.  

We also tested the effects of interactions with 
universities on DBFs innovative capabilities. The 
percentage of innovative patents (A-class) out of the 
total number of DBFs patents is on the vertical axis of 
the lower left graph in Figure 1. The two lines 
represent the values of this percentage in two different 
simulations: the standard scenario and a scenario in 
which universities were excluded from the population 
(DBFs could not interact with them). The difference in 
the trends shows that DBFs greatly benefit from 
knowledge exchange with universities. This shows that 
despite the missing cognitive resource effects on the 
universities side, this effect is visible for the industry 
partners. In other words, biotech firms benefit more 
than universities from the knowledge exchange 
between each other. 

Finally our simulation experiments show that 
governments can effectively reduce the harmful effects 
of UIRs on the universities research direction. Higher 
incentives for basic research can be restored through a 
larger basic research public funding budget. This is 
shown in the lower right graphs in Figure 1. On the 
vertical axis we find the average research direction of 
universities. The different lines represent different 
scenarios in which the basic research public budget is 
progressively increased (MAX_NRA_rd3/4/5). The 
graph shows that a larger government basic research 
funding prevents the shift of university research 
orientation from basic to applied research. 

4 Insights from the modeling 
experience 

The application of the Agent-based simulation 
methodology generates new insights on the complex 
phenomenon of University-Industry Relationships.  

Our experiments reject the hypothesis of a positive 
influence of a cognitive resource effect on university 
innovative patents productivity and partially reduced 
the influence of the financial resource effect. 

Nevertheless, knowledge exchange processes are 
still a crucial characteristic of UIRs. Intensive 
interactions between universities and DBFs do not 
produce an increase in universities’ innovative 
capabilities. Instead, they reduce the total number of 
patents coming from academic research. This, 
however, does not mean that there are no benefits from 
these interactions. Through joint research projects, an 
exchange of knowledge between universities and  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

biotech firms occurs. This newly acquired capabilities 
and abilities expand the university knowledge base, 
thereby increasing its heterogeneity, but this is not 
sufficient for a larger patent productivity of 
universities. Many universities might not have the 
right skills to deal with applied research, namely, they 
might not be experienced to deal with a knowledge 
that is far from their traditional research orientation.  

Our findings also show that when a complex 
phenomenon like UIRs involving heterogeneous actors 
is analyzed, one has to consider all of its multi-facetted 
aspects. In particular, our results show that UIRs cause 
a significant increase in the innovative potential of 
biotech firms. This is due to a threefold effect: (i) 
interactions with universities expand DBFs’ 
knowledge bases, allowing biotech firms to absorb 
new kene elements focusing on fundamental research. 
(ii) UIRs increase the variance in their capabilities and, 
(iii) they have a positive effect on DBFs’ networking 
experience. Therefore our results highlight the 
importance of UIRs concerning technology and 
knowledge flows. These finding suggest that, besides 
universities, new scientific knowledge is increasingly 
generated by biotech firms. 

Finally our results show that even if public and 
industry research funding are considered to substitute 
each other, in bio-pharmaceuticals they are 
complementary. According to our results government 
basic research grants are important to counterbalance 
the different aims and incentives provided by industry  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

which further enlarge the market failure, especially in 
the long run. Accordingly, government research 
policies should be oriented to raise the public research 
funding budget with the aim to ensure that an adequate 
amount of fundamental research is undertaken. 

5 Conclusions 
Innovation takes place in extremely complex systems 
which are characterized by heterogeneous actors, multi-
dimensional interactions and multiple knowledge flows. 
The increasing complexity creates new challenges for 
scholars and can be disentangled only by the integration 
of several methodologies.  

We argue that ABM can play a key role in this respect. 
In particular double-loop learning-by-modeling 
challenges what we think to know about the object of the 
analysis. An example of this double-loop learning 
process, focused on UIRs has been provided. As argued 
by Argyris and Schön [1996], double loop learning starts 
from theory and refines it through a verification and 
validation cycle in which the theory itself is checked and 
improved. In a similar vein, Deichsel and Pyka [2009] 
recommended that modelers should start with reasonably 
simple assumption based on theoretical elements and 
stylized facts and hence entering the process of going 
back and forth between assumptions and implications. In 
the case of the model presented above we use as initial 
inputs of the modeling process a combination of theories 
and insights gained from empirical evidences as well as 
stylized facts about UIRs. This theories greatly help to set 

Figure 1 



up a more realistic view of agents (bounded) rationality, 
and of their satisfycing behavior. Our modeling effort 
benefits from the large literature on the nature of 
innovation processes involving science and technology 
interactions. We also started from theories of innovation 
networks which are now largely accepted as a crucial 
source of innovation driven by interactions between 
specialized agents and the underling knowledge 
exchange. Finally we build on theories on the relation 
between cognitive distance and innovation outputs 
[Nooteboom, 1992 and 1999] or the relations between 
research orientation and innovation output to set up some 
starting formulas.  
Obviously we match theories with some facts and figures 
about UIRs in the bio-pharmaceutical industry. For 
instance, we calibrate the functional relations as well as 
the parameters of our model by running several test-
simulations and compare results with empirical data 
about the percentages of A/B/C drugs in US. Then we 
pick up those parameters and refine the formulas in a way 
that the results are reasonably similar to real world data. 
Finally the robustness of our parameters is tested by a 
sensitivity analysis. This way one can still have some 
surprising findings compared to the initial expectation of 
the modeler. This eventually leads to interpretation of the 
results that really provides new insights and viewpoints. 
In our model this has been the case for the un-experience 
of many universities to deal with a too radical different 
research orientation compared to their ancestral one. Of 
course, results depend on assumptions. Practically what 
we say is that if we assume bounded rational agents and 
the relations between research orientation and innovative 
outputs and between cognitive distance and innovative 
outputs, then university-industry relationships lead to the 
knowledge dynamics that we have highlighted. However, 
it is crucial to notice that these assumptions have not 
“fallen from the sky” but are results of a sort of inductive 
process driven by the interaction among theoretical 
elements, stylized facts and learning by modeling. 
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